Abstract:Topic modeling is a fundamental task in natural language processing, allowing the discovery of latent thematic structures in text corpora. While Large Language Models (LLMs) have demonstrated promising capabilities in topic discovery, their direct application to topic modeling suffers from issues such as incomplete topic coverage, misalignment of topics, and inefficiency. To address these limitations, we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs with many existing Neural Topic Models (NTMs). In LLM-ITL, global topics and document representations are learned through the NTM, while an LLM refines the topics via a confidence-weighted Optimal Transport (OT)-based alignment objective. This process enhances the interpretability and coherence of the learned topics, while maintaining the efficiency of NTMs. Extensive experiments demonstrate that LLM-ITL can help NTMs significantly improve their topic interpretability while maintaining the quality of document representation.
Abstract:Tabular data have been playing a mostly important role in diverse real-world fields, such as healthcare, engineering, finance, etc. With the recent success of deep learning, many tabular machine learning (ML) methods based on deep networks (e.g., Transformer, ResNet) have achieved competitive performance on tabular benchmarks. However, existing deep tabular ML methods suffer from the representation entanglement and localization, which largely hinders their prediction performance and leads to performance inconsistency on tabular tasks. To overcome these problems, we explore a novel direction of applying prototype learning for tabular ML and propose a prototype-based tabular representation learning framework, PTaRL, for tabular prediction tasks. The core idea of PTaRL is to construct prototype-based projection space (P-Space) and learn the disentangled representation around global data prototypes. Specifically, PTaRL mainly involves two stages: (i) Prototype Generation, that constructs global prototypes as the basis vectors of P-Space for representation, and (ii) Prototype Projection, that projects the data samples into P-Space and keeps the core global data information via Optimal Transport. Then, to further acquire the disentangled representations, we constrain PTaRL with two strategies: (i) to diversify the coordinates towards global prototypes of different representations within P-Space, we bring up a diversification constraint for representation calibration; (ii) to avoid prototype entanglement in P-Space, we introduce a matrix orthogonalization constraint to ensure the independence of global prototypes. Finally, we conduct extensive experiments in PTaRL coupled with state-of-the-art deep tabular ML models on various tabular benchmarks and the results have shown our consistent superiority.
Abstract:Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels. Accurate and robust detection of DR severity is critical for the timely management and treatment of diabetes. However, most current DR grading methods suffer from insufficient robustness to data variability (\textit{e.g.} colour fundus images), posing a significant difficulty for accurate and robust grading. In this work, we propose a novel DR grading framework CLIP-DR based on three observations: 1) Recent pre-trained visual language models, such as CLIP, showcase a notable capacity for generalisation across various downstream tasks, serving as effective baseline models. 2) The grading of image-text pairs for DR often adheres to a discernible natural sequence, yet most existing DR grading methods have primarily overlooked this aspect. 3) A long-tailed distribution among DR severity levels complicates the grading process. This work proposes a novel ranking-aware prompting strategy to help the CLIP model exploit the ordinal information. Specifically, we sequentially design learnable prompts between neighbouring text-image pairs in two different ranking directions. Additionally, we introduce a Similarity Matrix Smooth module into the structure of CLIP to balance the class distribution. Finally, we perform extensive comparisons with several state-of-the-art methods on the GDRBench benchmark, demonstrating our CLIP-DR's robustness and superior performance. The implementation code is available \footnote{\url{https://github.com/Qinkaiyu/CLIP-DR}
Abstract:Topic modeling has been a widely used tool for unsupervised text analysis. However, comprehensive evaluations of a topic model remain challenging. Existing evaluation methods are either less comparable across different models (e.g., perplexity) or focus on only one specific aspect of a model (e.g., topic quality or document representation quality) at a time, which is insufficient to reflect the overall model performance. In this paper, we propose WALM (Words Agreement with Language Model), a new evaluation method for topic modeling that comprehensively considers the semantic quality of document representations and topics in a joint manner, leveraging the power of large language models (LLMs). With extensive experiments involving different types of topic models, WALM is shown to align with human judgment and can serve as a complementary evaluation method to the existing ones, bringing a new perspective to topic modeling. Our software package will be available at https://github.com/Xiaohao-Yang/Topic_Model_Evaluation, which can be integrated with many widely used topic models.
Abstract:Neural Processes (NPs) are variational frameworks that aim to represent stochastic processes with deep neural networks. Despite their obvious benefits in uncertainty estimation for complex distributions via data-driven priors, NPs enforce network parameter sharing between the conditional prior and posterior distributions, thereby risking introducing a misspecified prior. We hereby propose R\'enyi Neural Processes (RNP) to relax the influence of the misspecified prior and optimize a tighter bound of the marginal likelihood. More specifically, by replacing the standard KL divergence with the R\'enyi divergence between the posterior and the approximated prior, we ameliorate the impact of the misspecified prior via a parameter {\alpha} so that the resulting posterior focuses more on tail samples and reduce density on overconfident regions. Our experiments showed log-likelihood improvements on several existing NP families. We demonstrated the superior performance of our approach on various benchmarks including regression and image inpainting tasks. We also validate the effectiveness of RNPs on real-world tabular regression problems.
Abstract:Prompt learning has shown to be an efficient and effective fine-tuning method for vision-language models like CLIP. While numerous studies have focused on the generalisation of these models in few-shot classification, their capability in near out-of-distribution (OOD) detection has been overlooked. A few recent works have highlighted the promising performance of prompt learning in far OOD detection. However, the more challenging task of few-shot near OOD detection has not yet been addressed. In this study, we investigate the near OOD detection capabilities of prompt learning models and observe that commonly used OOD scores have limited performance in near OOD detection. To enhance the performance, we propose a fast and simple post-hoc method that complements existing logit-based scores, improving near OOD detection AUROC by up to 11.67% with minimal computational cost. Our method can be easily applied to any prompt learning model without change in architecture or re-training the models. Comprehensive empirical evaluations across 13 datasets and 8 models demonstrate the effectiveness and adaptability of our method.
Abstract:Real-world datasets usually are class-imbalanced and corrupted by label noise. To solve the joint issue of long-tailed distribution and label noise, most previous works usually aim to design a noise detector to distinguish the noisy and clean samples. Despite their effectiveness, they may be limited in handling the joint issue effectively in a unified way. In this work, we develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching, which can be solved with optimal transport (OT). By setting a manually-specific probability measure and using a learned transport plan to pseudo-label the training samples, the proposed method can reduce the side-effects of noisy and long-tailed data simultaneously. Then we introduce a simple yet effective filter criteria by combining the observed labels and pseudo labels to obtain a more balanced and less noisy subset for a robust model training. Extensive experiments demonstrate that our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
Abstract:Concerns for the privacy of individuals captured in public imagery have led to privacy-preserving action recognition. Existing approaches often suffer from issues arising through obfuscation being applied globally and a lack of interpretability. Global obfuscation hides privacy sensitive regions, but also contextual regions important for action recognition. Lack of interpretability erodes trust in these new technologies. We highlight the limitations of current paradigms and propose a solution: Human selected privacy templates that yield interpretability by design, an obfuscation scheme that selectively hides attributes and also induces temporal consistency, which is important in action recognition. Our approach is architecture agnostic and directly modifies input imagery, while existing approaches generally require architecture training. Our approach offers more flexibility, as no retraining is required, and outperforms alternatives on three widely used datasets.
Abstract:Causal discovery in the presence of missing data introduces a chicken-and-egg dilemma. While the goal is to recover the true causal structure, robust imputation requires considering the dependencies or preferably causal relations among variables. Merely filling in missing values with existing imputation methods and subsequently applying structure learning on the complete data is empirical shown to be sub-optimal. To this end, we propose in this paper a score-based algorithm, based on optimal transport, for learning causal structure from missing data. This optimal transport viewpoint diverges from existing score-based approaches that are dominantly based on EM. We project structure learning as a density fitting problem, where the goal is to find the causal model that induces a distribution of minimum Wasserstein distance with the distribution over the observed data. Through extensive simulations and real-data experiments, our framework is shown to recover the true causal graphs more effectively than the baselines in various simulations and real-data experiments. Empirical evidences also demonstrate the superior scalability of our approach, along with the flexibility to incorporate any off-the-shelf causal discovery methods for complete data.
Abstract:Pretext training followed by task-specific fine-tuning has been a successful approach in vision and language domains. This paper proposes a self-supervised pretext training framework tailored to event sequence data. We introduce a novel alignment verification task that is specialized to event sequences, building on good practices in masked reconstruction and contrastive learning. Our pretext tasks unlock foundational representations that are generalizable across different down-stream tasks, including next-event prediction for temporal point process models, event sequence classification, and missing event interpolation. Experiments on popular public benchmarks demonstrate the potential of the proposed method across different tasks and data domains.