Abstract:Multimodal Federated Learning (MMFL) utilizes multiple modalities in each client to build a more powerful Federated Learning (FL) model than its unimodal counterpart. However, the impact of missing modality in different clients, also called modality incongruity, has been greatly overlooked. This paper, for the first time, analyses the impact of modality incongruity and reveals its connection with data heterogeneity across participating clients. We particularly inspect whether incongruent MMFL with unimodal and multimodal clients is more beneficial than unimodal FL. Furthermore, we examine three potential routes of addressing this issue. Firstly, we study the effectiveness of various self-attention mechanisms towards incongruity-agnostic information fusion in MMFL. Secondly, we introduce a modality imputation network (MIN) pre-trained in a multimodal client for modality translation in unimodal clients and investigate its potential towards mitigating the missing modality problem. Thirdly, we assess the capability of client-level and server-level regularization techniques towards mitigating modality incongruity effects. Experiments are conducted under several MMFL settings on two publicly available real-world datasets, MIMIC-CXR and Open-I, with Chest X-Ray and radiology reports.
Abstract:Out-of-distribution (OOD) detection is essential to improve the reliability of machine learning models by detecting samples that do not belong to the training distribution. Detecting OOD samples effectively in certain tasks can pose a challenge because of the substantial heterogeneity within the in-distribution (ID), and the high structural similarity between ID and OOD classes. For instance, when detecting heart views in fetal ultrasound videos there is a high structural similarity between the heart and other anatomies such as the abdomen, and large in-distribution variance as a heart has 5 distinct views and structural variations within each view. To detect OOD samples in this context, the resulting model should generalise to the intra-anatomy variations while rejecting similar OOD samples. In this paper, we introduce dual-conditioned diffusion models (DCDM) where we condition the model on in-distribution class information and latent features of the input image for reconstruction-based OOD detection. This constrains the generative manifold of the model to generate images structurally and semantically similar to those within the in-distribution. The proposed model outperforms reference methods with a 12% improvement in accuracy, 22% higher precision, and an 8% better F1 score.
Abstract:The most challenging, yet practical, setting of semi-supervised federated learning (SSFL) is where a few clients have fully labeled data whereas the other clients have fully unlabeled data. This is particularly common in healthcare settings where collaborating partners (typically hospitals) may have images but not annotations. The bottleneck in this setting is the joint training of labeled and unlabeled clients as the objective function for each client varies based on the availability of labels. This paper investigates an alternative way for effective training with labeled and unlabeled clients in a federated setting. We propose a novel learning scheme specifically designed for SSFL which we call Isolated Federated Learning (IsoFed) that circumvents the problem by avoiding simple averaging of supervised and semi-supervised models together. In particular, our training approach consists of two parts - (a) isolated aggregation of labeled and unlabeled client models, and (b) local self-supervised pretraining of isolated global models in all clients. We evaluate our model performance on medical image datasets of four different modalities publicly available within the biomedical image classification benchmark MedMNIST. We further vary the proportion of labeled clients and the degree of heterogeneity to demonstrate the effectiveness of the proposed method under varied experimental settings.