Abstract:In the realm of novelty detection, accurately identifying outliers in data without specific class information poses a significant challenge. While current methods excel in single-object scenarios, they struggle with multi-object situations due to their focus on individual objects. Our paper suggests a novel approach: redefining `normal' at the object level in training datasets. Rather than the usual image-level view, we consider the most dominant object in a dataset as the norm, offering a perspective that is more effective for real-world scenarios. Adapting to our object-level definition of `normal', we modify knowledge distillation frameworks, where a student network learns from a pre-trained teacher network. Our first contribution, DeFeND(Dense Feature Fine-tuning on Normal Data), integrates dense feature fine-tuning into the distillation process, allowing the teacher network to focus on object-level features with a self-supervised loss. The second is masked knowledge distillation, where the student network works with partially hidden inputs, honing its ability to deduce and generalize from incomplete data. This approach not only fares well in single-object novelty detection but also considerably surpasses existing methods in multi-object contexts. The implementation is available at: https://github.com/SMSD75/Redefining_Normal_ACCV24/tree/main
Abstract:Our world is full of varied actions and moves across specialized domains that we, as humans, strive to identify and understand. Within any single domain, actions can often appear quite similar, making it challenging for deep models to distinguish them accurately. To evaluate the effectiveness of multimodal foundation models in helping us recognize such actions, we present ActionAtlas v1.0, a multiple-choice video question answering benchmark featuring short videos across various sports. Each video in the dataset is paired with a question and four or five choices. The question pinpoints specific individuals, asking which choice "best" describes their action within a certain temporal context. Overall, the dataset includes 934 videos showcasing 580 unique actions across 56 sports, with a total of 1896 actions within choices. Unlike most existing video question answering benchmarks that only cover simplistic actions, often identifiable from a single frame, ActionAtlas focuses on intricate movements and rigorously tests the model's capability to discern subtle differences between moves that look similar within each domain. We evaluate open and proprietary foundation models on this benchmark, finding that the best model, GPT-4o, achieves a maximum accuracy of 45.52%. Meanwhile, Non-expert crowd workers, provided with action description for each choice, achieve 61.64% accuracy, where random chance is approximately 21%. Our findings with state-of-the-art models indicate that having a high frame sampling rate is important for accurately recognizing actions in ActionAtlas, a feature that some leading proprietary video models, such as Gemini, do not include in their default configuration.
Abstract:Today's most advanced multimodal models remain proprietary. The strongest open-weight models rely heavily on synthetic data from proprietary VLMs to achieve good performance, effectively distilling these closed models into open ones. As a result, the community is still missing foundational knowledge about how to build performant VLMs from scratch. We present Molmo, a new family of VLMs that are state-of-the-art in their class of openness. Our key innovation is a novel, highly detailed image caption dataset collected entirely from human annotators using speech-based descriptions. To enable a wide array of user interactions, we also introduce a diverse dataset mixture for fine-tuning that includes in-the-wild Q&A and innovative 2D pointing data. The success of our approach relies on careful choices for the model architecture details, a well-tuned training pipeline, and, most critically, the quality of our newly collected datasets, all of which will be released. The best-in-class 72B model within the Molmo family not only outperforms others in the class of open weight and data models but also compares favorably against proprietary systems like GPT-4o, Claude 3.5, and Gemini 1.5 on both academic benchmarks and human evaluation. We will be releasing all of our model weights, captioning and fine-tuning data, and source code in the near future. Select model weights, inference code, and demo are available at https://molmo.allenai.org.
Abstract:In this paper, we address Generalized Category Discovery, aiming to simultaneously uncover novel categories and accurately classify known ones. Traditional methods, which lean heavily on self-supervision and contrastive learning, often fall short when distinguishing between fine-grained categories. To address this, we introduce a novel concept called `self-expertise', which enhances the model's ability to recognize subtle differences and uncover unknown categories. Our approach combines unsupervised and supervised self-expertise strategies to refine the model's discernment and generalization. Initially, hierarchical pseudo-labeling is used to provide `soft supervision', improving the effectiveness of self-expertise. Our supervised technique differs from traditional methods by utilizing more abstract positive and negative samples, aiding in the formation of clusters that can generalize to novel categories. Meanwhile, our unsupervised strategy encourages the model to sharpen its category distinctions by considering within-category examples as `hard' negatives. Supported by theoretical insights, our empirical results showcase that our method outperforms existing state-of-the-art techniques in Generalized Category Discovery across several fine-grained datasets. Our code is available at: https://github.com/SarahRastegar/SelEx.
Abstract:We propose sorting patch representations across views as a novel self-supervised learning signal to improve pretrained representations. To this end, we introduce NeCo: Patch Neighbor Consistency, a novel training loss that enforces patch-level nearest neighbor consistency across a student and teacher model, relative to reference batches. Our method leverages a differentiable sorting method applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. We demonstrate that this method generates high-quality dense feature encoders and establish several new state-of-the-art results: +5.5% and + 6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, and +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff.
Abstract:Video-based pretraining offers immense potential for learning strong visual representations on an unprecedented scale. Recently, masked video modeling methods have shown promising scalability, yet fall short in capturing higher-level semantics due to reconstructing predefined low-level targets such as pixels. To tackle this, we present Sinkhorn-guided Masked Video Modelling (SIGMA), a novel video pretraining method that jointly learns the video model in addition to a target feature space using a projection network. However, this simple modification means that the regular L2 reconstruction loss will lead to trivial solutions as both networks are jointly optimized. As a solution, we distribute features of space-time tubes evenly across a limited number of learnable clusters. By posing this as an optimal transport problem, we enforce high entropy in the generated features across the batch, infusing semantic and temporal meaning into the feature space. The resulting cluster assignments are used as targets for a symmetric prediction task where the video model predicts cluster assignment of the projection network and vice versa. Experimental results on ten datasets across three benchmarks validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations improving upon state-of-the-art methods. Our project website with code is available at: https://quva-lab.github.io/SIGMA.
Abstract:In the domain of anomaly detection, methods often excel in either high-level semantic or low-level industrial benchmarks, rarely achieving cross-domain proficiency. Semantic anomalies are novelties that differ in meaning from the training set, like unseen objects in self-driving cars. In contrast, industrial anomalies are subtle defects that preserve semantic meaning, such as cracks in airplane components. In this paper, we present GeneralAD, an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings with minimal per-task adjustments. In our approach, we capitalize on the inherent design of Vision Transformers, which are trained on image patches, thereby ensuring that the last hidden states retain a patch-based structure. We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features to construct pseudo-abnormal samples. These features are fed to an attention-based discriminator, which is trained to score every patch in the image. With this, our method can both accurately identify anomalies at the image level and also generate interpretable anomaly maps. We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining for both localization and detection tasks.
Abstract:Contrastive language image pretraining (CLIP) is a standard method for training vision-language models. While CLIP is scalable, promptable, and robust to distribution shifts on image classification tasks, it lacks object localization capabilities. This paper studies the following question: Can we augment CLIP training with task-specific vision models from model zoos to improve its visual representations? Towards this end, we leverage open-source task-specific vision models to generate pseudo-labels for an uncurated and noisy image-text dataset. Subsequently, we train CLIP models on these pseudo-labels in addition to the contrastive training on image and text pairs. This simple setup shows substantial improvements of up to 16.3% across different vision tasks, including segmentation, detection, depth estimation, and surface normal estimation. Importantly, these enhancements are achieved without compromising CLIP's existing capabilities, including its proficiency in promptable zero-shot classification.
Abstract:We introduce SHARCS for adaptive inference that takes into account the hardness of input samples. SHARCS can train a router on any transformer network, enabling the model to direct different samples to sub-networks with varying widths. Our experiments demonstrate that: (1) SHARCS outperforms or complements existing per-sample adaptive inference methods across various classification tasks in terms of accuracy vs. FLOPs; (2) SHARCS generalizes across different architectures and can be even applied to compressed and efficient transformer encoders to further improve their efficiency; (3) SHARCS can provide a 2 times inference speed up at an insignificant drop in accuracy.
Abstract:Spatially dense self-supervised learning is a rapidly growing problem domain with promising applications for unsupervised segmentation and pretraining for dense downstream tasks. Despite the abundance of temporal data in the form of videos, this information-rich source has been largely overlooked. Our paper aims to address this gap by proposing a novel approach that incorporates temporal consistency in dense self-supervised learning. While methods designed solely for images face difficulties in achieving even the same performance on videos, our method improves not only the representation quality for videos-but also images. Our approach, which we call time-tuning, starts from image-pretrained models and fine-tunes them with a novel self-supervised temporal-alignment clustering loss on unlabeled videos. This effectively facilitates the transfer of high-level information from videos to image representations. Time-tuning improves the state-of-the-art by 8-10% for unsupervised semantic segmentation on videos and matches it for images. We believe this method paves the way for further self-supervised scaling by leveraging the abundant availability of videos. The implementation can be found here : https://github.com/SMSD75/Timetuning