Abstract:Semantic Textual Relatedness holds significant relevance in Natural Language Processing, finding applications across various domains. Traditionally, approaches to STR have relied on knowledge-based and statistical methods. However, with the emergence of Large Language Models, there has been a paradigm shift, ushering in new methodologies. In this paper, we delve into the investigation of sentence-level STR within Track A (Supervised) by leveraging fine-tuning techniques on the RoBERTa transformer. Our study focuses on assessing the efficacy of this approach across different languages. Notably, our findings indicate promising advancements in STR performance, particularly in Latin languages. Specifically, our results demonstrate notable improvements in English, achieving a correlation of 0.82 and securing a commendable 19th rank. Similarly, in Spanish, we achieved a correlation of 0.67, securing the 15th position. However, our approach encounters challenges in languages like Arabic, where we observed a correlation of only 0.38, resulting in a 20th rank.
Abstract:Detecting Machine-Generated Text (MGT) has emerged as a significant area of study within Natural Language Processing. While language models generate text, they often leave discernible traces, which can be scrutinized using either traditional feature-based methods or more advanced neural language models. In this research, we explore the effectiveness of fine-tuning a RoBERTa-base transformer, a powerful neural architecture, to address MGT detection as a binary classification task. Focusing specifically on Subtask A (Monolingual-English) within the SemEval-2024 competition framework, our proposed system achieves an accuracy of 78.9% on the test dataset, positioning us at 57th among participants. Our study addresses this challenge while considering the limited hardware resources, resulting in a system that excels at identifying human-written texts but encounters challenges in accurately discerning MGTs.
Abstract:In this paper, we introduce a novel Artificial Intelligence (AI) system inspired by the philosophical and psychoanalytical concept of imagination as a ``Re-construction of Experiences". Our AI system is equipped with an imagination-inspired module that bridges the gap between textual inputs and other modalities, enriching the derived information based on previously learned experiences. A unique feature of our system is its ability to formulate independent perceptions of inputs. This leads to unique interpretations of a concept that may differ from human interpretations but are equally valid, a phenomenon we term as ``Interpretable Misunderstanding". We employ large-scale models, specifically a Multimodal Large Language Model (MLLM), enabling our proposed system to extract meaningful information across modalities while primarily remaining unimodal. We evaluated our system against other large language models across multiple tasks, including emotion recognition and question-answering, using a zero-shot methodology to ensure an unbiased scenario that may happen by fine-tuning. Significantly, our system outperformed the best Large Language Models (LLM) on the MELD, IEMOCAP, and CoQA datasets, achieving Weighted F1 (WF1) scores of 46.74%, 25.23%, and Overall F1 (OF1) score of 17%, respectively, compared to 22.89%, 12.28%, and 7% from the well-performing LLM. The goal is to go beyond the statistical view of language processing and tie it to human concepts such as philosophy and psychoanalysis. This work represents a significant advancement in the development of imagination-inspired AI systems, opening new possibilities for AI to generate deep and interpretable information across modalities, thereby enhancing human-AI interaction.
Abstract:Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities.