Abstract:Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.
Abstract:Recent advances in self-supervised learning (SSL) have revolutionized computer vision through innovative architectures and learning objectives, yet they have not fully leveraged insights from biological visual processing systems. Recently, a brain-inspired SSL model named PhiNet was proposed; it is based on a ResNet backbone and operates on static image inputs with strong augmentation. In this paper, we introduce PhiNet v2, a novel Transformer-based architecture that processes temporal visual input (that is, sequences of images) without relying on strong augmentation. Our model leverages variational inference to learn robust visual representations from continuous input streams, similar to human visual processing. Through extensive experimentation, we demonstrate that PhiNet v2 achieves competitive performance compared to state-of-the-art vision foundation models, while maintaining the ability to learn from sequential input without strong data augmentation. This work represents a significant step toward more biologically plausible computer vision systems that process visual information in a manner more closely aligned with human cognitive processes.
Abstract:Anomaly Detection (AD) involves identifying deviations from normal data distributions and is critical in fields such as medical diagnostics and industrial defect detection. Traditional AD methods typically require the availability of normal training samples; however, this assumption is not always feasible, as collecting such data can be impractical. Additionally, these methods often struggle to generalize across different domains. Recent advancements, such as AnomalyCLIP and AdaCLIP, utilize the zero-shot generalization capabilities of CLIP but still face a performance gap between image-level and pixel-level anomaly detection. To address this gap, we propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder. Also, to capture fine-grained variations more effectively, we have modified the CLIP vision encoder and altered the extraction of dense features. These changes ensure that the features retain richer spatial and structural information for both normal and anomalous prompts. Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets. This demonstrates its effectiveness in both image-level and pixel-level anomaly detection.
Abstract:There have been several efforts to improve Novelty Detection (ND) performance. However, ND methods often suffer significant performance drops under minor distribution shifts caused by changes in the environment, known as style shifts. This challenge arises from the ND setup, where the absence of out-of-distribution (OOD) samples during training causes the detector to be biased toward the dominant style features in the in-distribution (ID) data. As a result, the model mistakenly learns to correlate style with core features, using this shortcut for detection. Robust ND is crucial for real-world applications like autonomous driving and medical imaging, where test samples may have different styles than the training data. Motivated by this, we propose a robust ND method that crafts an auxiliary OOD set with style features similar to the ID set but with different core features. Then, a task-based knowledge distillation strategy is utilized to distinguish core features from style features and help our model rely on core features for discriminating crafted OOD and ID sets. We verified the effectiveness of our method through extensive experimental evaluations on several datasets, including synthetic and real-world benchmarks, against nine different ND methods.
Abstract:Scanning for trojan (backdoor) in deep neural networks is crucial due to their significant real-world applications. There has been an increasing focus on developing effective general trojan scanning methods across various trojan attacks. Despite advancements, there remains a shortage of methods that perform effectively without preconceived assumptions about the backdoor attack method. Additionally, we have observed that current methods struggle to identify classifiers trojaned using adversarial training. Motivated by these challenges, our study introduces a novel scanning method named TRODO (TROjan scanning by Detection of adversarial shifts in Out-of-distribution samples). TRODO leverages the concept of "blind spots"--regions where trojaned classifiers erroneously identify out-of-distribution (OOD) samples as in-distribution (ID). We scan for these blind spots by adversarially shifting OOD samples towards in-distribution. The increased likelihood of perturbed OOD samples being classified as ID serves as a signature for trojan detection. TRODO is both trojan and label mapping agnostic, effective even against adversarially trained trojaned classifiers. It is applicable even in scenarios where training data is absent, demonstrating high accuracy and adaptability across various scenarios and datasets, highlighting its potential as a robust trojan scanning strategy.
Abstract:Despite significant progress in Anomaly Detection (AD), the robustness of existing detection methods against adversarial attacks remains a challenge, compromising their reliability in critical real-world applications such as autonomous driving. This issue primarily arises from the AD setup, which assumes that training data is limited to a group of unlabeled normal samples, making the detectors vulnerable to adversarial anomaly samples during testing. Additionally, implementing adversarial training as a safeguard encounters difficulties, such as formulating an effective objective function without access to labels. An ideal objective function for adversarial training in AD should promote strong perturbations both within and between the normal and anomaly groups to maximize margin between normal and anomaly distribution. To address these issues, we first propose crafting a pseudo-anomaly group derived from normal group samples. Then, we demonstrate that adversarial training with contrastive loss could serve as an ideal objective function, as it creates both inter- and intra-group perturbations. However, we notice that spurious negative pairs compromise the conventional contrastive loss to achieve robust AD. Spurious negative pairs are those that should be closely mapped but are erroneously separated. These pairs introduce noise and misguide the direction of inter-group adversarial perturbations. To overcome the effect of spurious negative pairs, we define opposite pairs and adversarially pull them apart to strengthen inter-group perturbations. Experimental results demonstrate our superior performance in both clean and adversarial scenarios, with a 26.1% improvement in robust detection across various challenging benchmark datasets. The implementation of our work is available at: https://github.com/rohban-lab/COBRA.
Abstract:Novelty Detection (ND) plays a crucial role in machine learning by identifying new or unseen data during model inference. This capability is especially important for the safe and reliable operation of automated systems. Despite advances in this field, existing techniques often fail to maintain their performance when subject to adversarial attacks. Our research addresses this gap by marrying the merits of nearest-neighbor algorithms with robust features obtained from models pretrained on ImageNet. We focus on enhancing the robustness and performance of ND algorithms. Experimental results demonstrate that our approach significantly outperforms current state-of-the-art methods across various benchmarks, particularly under adversarial conditions. By incorporating robust pretrained features into the k-NN algorithm, we establish a new standard for performance and robustness in the field of robust ND. This work opens up new avenues for research aimed at fortifying machine learning systems against adversarial vulnerabilities. Our implementation is publicly available at https://github.com/rohban-lab/ZARND.
Abstract:Ensuring that Software Requirements Specifications (SRS) align with higher-level organizational or national requirements is vital, particularly in regulated environments such as finance and aerospace. In these domains, maintaining consistency, adhering to regulatory frameworks, minimizing errors, and meeting critical expectations are essential for the reliable functioning of systems. The widespread adoption of large language models (LLMs) highlights their immense potential, yet there remains considerable scope for improvement in retrieving relevant information and enhancing reasoning capabilities. This study demonstrates that integrating a robust Graph-RAG framework with advanced prompt engineering techniques, such as Chain of Thought and Tree of Thought, can significantly enhance performance. Compared to baseline RAG methods and simple prompting strategies, this approach delivers more accurate and context-aware results. While this method demonstrates significant improvements in performance, it comes with challenges. It is both costly and more complex to implement across diverse contexts, requiring careful adaptation to specific scenarios. Additionally, its effectiveness heavily relies on having complete and accurate input data, which may not always be readily available, posing further limitations to its scalability and practicality.
Abstract:Machine learning models often suffer from catastrophic forgetting of previously learned knowledge when learning new classes. Various methods have been proposed to mitigate this issue. However, rehearsal-based learning, which retains samples from previous classes, typically achieves good performance but tends to memorize specific instances, struggling with Out-of-Distribution (OOD) generalization. This often leads to high forgetting rates and poor generalization. Surprisingly, the OOD generalization capabilities of these methods have been largely unexplored. In this paper, we highlight this issue and propose a simple yet effective strategy inspired by contrastive learning and data-centric principles to address it. We introduce Adaptive Contrastive Replay (ACR), a method that employs dual optimization to simultaneously train both the encoder and the classifier. ACR adaptively populates the replay buffer with misclassified samples while ensuring a balanced representation of classes and tasks. By refining the decision boundary in this way, ACR achieves a balance between stability and plasticity. Our method significantly outperforms previous approaches in terms of OOD generalization, achieving an improvement of 13.41\% on Split CIFAR-100, 9.91\% on Split Mini-ImageNet, and 5.98\% on Split Tiny-ImageNet.
Abstract:Novelty detection is a critical task for deploying machine learning models in the open world. A crucial property of novelty detection methods is universality, which can be interpreted as generalization across various distributions of training or test data. More precisely, for novelty detection, distribution shifts may occur in the training set or the test set. Shifts in the training set refer to cases where we train a novelty detector on a new dataset and expect strong transferability. Conversely, distribution shifts in the test set indicate the methods' performance when the trained model encounters a shifted test sample. We experimentally show that existing methods falter in maintaining universality, which stems from their rigid inductive biases. Motivated by this, we aim for more generalized techniques that have more adaptable inductive biases. In this context, we leverage the fact that contrastive learning provides an efficient framework to easily switch and adapt to new inductive biases through the proper choice of augmentations in forming the negative pairs. We propose a novel probabilistic auto-negative pair generation method AutoAugOOD, along with contrastive learning, to yield a universal novelty detector method. Our experiments demonstrate the superiority of our method under different distribution shifts in various image benchmark datasets. Notably, our method emerges universality in the lens of adaptability to different setups of novelty detection, including one-class, unlabeled multi-class, and labeled multi-class settings. Code: https://github.com/mojtaba-nafez/UNODE