Abstract:Detecting Machine-Generated Text (MGT) has emerged as a significant area of study within Natural Language Processing. While language models generate text, they often leave discernible traces, which can be scrutinized using either traditional feature-based methods or more advanced neural language models. In this research, we explore the effectiveness of fine-tuning a RoBERTa-base transformer, a powerful neural architecture, to address MGT detection as a binary classification task. Focusing specifically on Subtask A (Monolingual-English) within the SemEval-2024 competition framework, our proposed system achieves an accuracy of 78.9% on the test dataset, positioning us at 57th among participants. Our study addresses this challenge while considering the limited hardware resources, resulting in a system that excels at identifying human-written texts but encounters challenges in accurately discerning MGTs.
Abstract:Language models, particularly generative models, are susceptible to hallucinations, generating outputs that contradict factual knowledge or the source text. This study explores methods for detecting hallucinations in three SemEval-2024 Task 6 tasks: Machine Translation, Definition Modeling, and Paraphrase Generation. We evaluate two methods: semantic similarity between the generated text and factual references, and an ensemble of language models that judge each other's outputs. Our results show that semantic similarity achieves moderate accuracy and correlation scores in trial data, while the ensemble method offers insights into the complexities of hallucination detection but falls short of expectations. This work highlights the challenges of hallucination detection and underscores the need for further research in this critical area.
Abstract:This paper explores the efficacy of large language models (LLMs) for Persian. While ChatGPT and consequent LLMs have shown remarkable performance in English, their efficiency for more low-resource languages remains an open question. We present the first comprehensive benchmarking study of LLMs across diverse Persian language tasks. Our primary focus is on GPT-3.5-turbo, but we also include GPT-4 and OpenChat-3.5 to provide a more holistic evaluation. Our assessment encompasses a diverse set of tasks categorized into classic, reasoning, and knowledge-based domains. To enable a thorough comparison, we evaluate LLMs against existing task-specific fine-tuned models. Given the limited availability of Persian datasets for reasoning tasks, we introduce two new benchmarks: one based on elementary school math questions and another derived from the entrance exams for 7th and 10th grades. Our findings reveal that while LLMs, especially GPT-4, excel in tasks requiring reasoning abilities and a broad understanding of general knowledge, they often lag behind smaller pre-trained models fine-tuned specifically for particular tasks. Additionally, we observe improved performance when test sets are translated to English before inputting them into GPT-3.5. These results highlight the significant potential for enhancing LLM performance in the Persian language. This is particularly noteworthy due to the unique attributes of Persian, including its distinct alphabet and writing styles.
Abstract:Inspired by human cognition, Jiang et al.(2023c) create a benchmark for assessing LLMs' lateral thinking-thinking outside the box. Building upon this benchmark, we investigate how different prompting methods enhance LLMs' performance on this task to reveal their inherent power for outside-the-box thinking ability. Through participating in SemEval-2024, task 9, Sentence Puzzle sub-task, we explore prompt engineering methods: chain of thoughts (CoT) and direct prompting, enhancing with informative descriptions, and employing contextualizing prompts using a retrieval augmented generation (RAG) pipeline. Our experiments involve three LLMs including GPT-3.5, GPT-4, and Zephyr-7B-beta. We generate a dataset of thinking paths between riddles and options using GPT-4, validated by humans for quality. Findings indicate that compressed informative prompts enhance performance. Dynamic in-context learning enhances model performance significantly. Furthermore, fine-tuning Zephyr on our dataset enhances performance across other commonsense datasets, underscoring the value of innovative thinking.