Abstract:This paper explores the efficacy of large language models (LLMs) for Persian. While ChatGPT and consequent LLMs have shown remarkable performance in English, their efficiency for more low-resource languages remains an open question. We present the first comprehensive benchmarking study of LLMs across diverse Persian language tasks. Our primary focus is on GPT-3.5-turbo, but we also include GPT-4 and OpenChat-3.5 to provide a more holistic evaluation. Our assessment encompasses a diverse set of tasks categorized into classic, reasoning, and knowledge-based domains. To enable a thorough comparison, we evaluate LLMs against existing task-specific fine-tuned models. Given the limited availability of Persian datasets for reasoning tasks, we introduce two new benchmarks: one based on elementary school math questions and another derived from the entrance exams for 7th and 10th grades. Our findings reveal that while LLMs, especially GPT-4, excel in tasks requiring reasoning abilities and a broad understanding of general knowledge, they often lag behind smaller pre-trained models fine-tuned specifically for particular tasks. Additionally, we observe improved performance when test sets are translated to English before inputting them into GPT-3.5. These results highlight the significant potential for enhancing LLM performance in the Persian language. This is particularly noteworthy due to the unique attributes of Persian, including its distinct alphabet and writing styles.
Abstract:The rapid production of data on the internet and the need to understand how users are feeling from a business and research perspective has prompted the creation of numerous automatic monolingual sentiment detection systems. More recently however, due to the unstructured nature of data on social media, we are observing more instances of multilingual and code-mixed texts. This development in content type has created a new demand for code-mixed sentiment analysis systems. In this study we collect, label and thus create a dataset of Persian-English code-mixed tweets. We then proceed to introduce a model which uses BERT pretrained embeddings as well as translation models to automatically learn the polarity scores of these Tweets. Our model outperforms the baseline models that use Na\"ive Bayes and Random Forest methods.