Abstract:In Federated Learning (FL), weighted aggregation of local models is conducted to generate a new global model, and the aggregation weights are typically normalized to 1. A recent study identifies the global weight shrinking effect in FL, indicating an enhancement in the global model's generalization when the sum of weights (i.e., the shrinking factor) is smaller than 1, where how to learn the shrinking factor becomes crucial. However, principled approaches to this solution have not been carefully studied from the adequate consideration of privacy concerns and layer-wise distinctions. To this end, we propose a novel model aggregation strategy, Federated Learning with Adaptive Layer-wise Weight Shrinking (FedLWS), which adaptively designs the shrinking factor in a layer-wise manner and avoids optimizing the shrinking factors on a proxy dataset. We initially explored the factors affecting the shrinking factor during the training process. Then we calculate the layer-wise shrinking factors by considering the distinctions among each layer of the global model. FedLWS can be easily incorporated with various existing methods due to its flexibility. Extensive experiments under diverse scenarios demonstrate the superiority of our method over several state-of-the-art approaches, providing a promising tool for enhancing the global model in FL.