Senior Member, IEEE
Abstract:Fine-tuning vision-language models (VLMs) with large amounts of unlabeled data has recently garnered significant interest. However, a key challenge remains the lack of high-quality pseudo-labeled data. Current pseudo-labeling strategies often struggle with mismatches between semantic and visual information, leading to sub-optimal performance of unsupervised prompt learning (UPL) methods. In this paper, we introduce a simple yet effective approach called \textbf{A}ugmenting D\textbf{i}scriminative \textbf{R}ichness via Diffusions (AiR), toward learning a richer discriminating way to represent the class comprehensively and thus facilitate classification. Specifically, our approach includes a pseudo-label generation module that leverages high-fidelity synthetic samples to create an auxiliary classifier, which captures richer visual variation, bridging text-image-pair classification to a more robust image-image-pair classification. Additionally, we exploit the diversity of diffusion-based synthetic samples to enhance prompt learning, providing greater information for semantic-visual alignment. Extensive experiments on five public benchmarks, including RESISC45 and Flowers102, and across three learning paradigms-UL, SSL, and TRZSL-demonstrate that AiR achieves substantial and consistent performance improvements over state-of-the-art unsupervised prompt learning methods.
Abstract:In recent years, deep neural networks (DNNs) have demonstrated state-of-the-art performance across various domains. However, despite their success, they often face calibration issues, particularly in safety-critical applications such as autonomous driving and healthcare, where unreliable predictions can have serious consequences. Recent research has started to improve model calibration from the view of the classifier. However, the exploration of designing the classifier to solve the model calibration problem is insufficient. Let alone most of the existing methods ignore the calibration errors arising from underconfidence. In this work, we propose a novel method by balancing learnable and ETF classifiers to solve the overconfidence or underconfidence problem for model Calibration named BalCAL. By introducing a confidence-tunable module and a dynamic adjustment method, we ensure better alignment between model confidence and its true accuracy. Extensive experimental validation shows that ours significantly improves model calibration performance while maintaining high predictive accuracy, outperforming existing techniques. This provides a novel solution to the calibration challenges commonly encountered in deep learning.
Abstract:Federated Learning (FL) has emerged as a promising framework for distributed machine learning, enabling collaborative model training without sharing local data, thereby preserving privacy and enhancing security. However, data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning. Most previous works overlook the adjustment of aggregation weights, relying solely on dataset size for weight assignment, which often leads to unstable convergence and reduced model performance. Recently, several studies have sought to refine aggregation strategies by incorporating dataset characteristics and model alignment. However, adaptively adjusting aggregation weights while ensuring data security-without requiring additional proxy data-remains a significant challenge. In this work, we propose Federated learning with Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process. The client vector captures the direction of model updates, reflecting local data variations, and is used to optimize the aggregation weight without requiring additional datasets or violating privacy. By assigning higher aggregation weights to local models whose updates align closely with the global optimization direction, FedAWA enhances the stability and generalization of the global model. Extensive experiments under diverse scenarios demonstrate the superiority of our method, providing a promising solution to the challenges of data heterogeneity in federated learning.
Abstract:Tabular data have been playing a mostly important role in diverse real-world fields, such as healthcare, engineering, finance, etc. With the recent success of deep learning, many tabular machine learning (ML) methods based on deep networks (e.g., Transformer, ResNet) have achieved competitive performance on tabular benchmarks. However, existing deep tabular ML methods suffer from the representation entanglement and localization, which largely hinders their prediction performance and leads to performance inconsistency on tabular tasks. To overcome these problems, we explore a novel direction of applying prototype learning for tabular ML and propose a prototype-based tabular representation learning framework, PTaRL, for tabular prediction tasks. The core idea of PTaRL is to construct prototype-based projection space (P-Space) and learn the disentangled representation around global data prototypes. Specifically, PTaRL mainly involves two stages: (i) Prototype Generation, that constructs global prototypes as the basis vectors of P-Space for representation, and (ii) Prototype Projection, that projects the data samples into P-Space and keeps the core global data information via Optimal Transport. Then, to further acquire the disentangled representations, we constrain PTaRL with two strategies: (i) to diversify the coordinates towards global prototypes of different representations within P-Space, we bring up a diversification constraint for representation calibration; (ii) to avoid prototype entanglement in P-Space, we introduce a matrix orthogonalization constraint to ensure the independence of global prototypes. Finally, we conduct extensive experiments in PTaRL coupled with state-of-the-art deep tabular ML models on various tabular benchmarks and the results have shown our consistent superiority.
Abstract:Real-world datasets usually are class-imbalanced and corrupted by label noise. To solve the joint issue of long-tailed distribution and label noise, most previous works usually aim to design a noise detector to distinguish the noisy and clean samples. Despite their effectiveness, they may be limited in handling the joint issue effectively in a unified way. In this work, we develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching, which can be solved with optimal transport (OT). By setting a manually-specific probability measure and using a learned transport plan to pseudo-label the training samples, the proposed method can reduce the side-effects of noisy and long-tailed data simultaneously. Then we introduce a simple yet effective filter criteria by combining the observed labels and pseudo labels to obtain a more balanced and less noisy subset for a robust model training. Extensive experiments demonstrate that our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
Abstract:Few-shot classification aims to learn a classifier to recognize unseen classes during training, where the learned model can easily become over-fitted based on the biased distribution formed by only a few training examples. A recent solution to this problem is calibrating the distribution of these few sample classes by transferring statistics from the base classes with sufficient examples, where how to decide the transfer weights from base classes to novel classes is the key. However, principled approaches for learning the transfer weights have not been carefully studied. To this end, we propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes, which is built upon a hierarchical Optimal Transport (H-OT) framework. By minimizing the high-level OT distance between novel samples and base classes, we can view the learned transport plan as the adaptive weight information for transferring the statistics of base classes. The learning of the cost function between a base class and novel class in the high-level OT leads to the introduction of the low-level OT, which considers the weights of all the data samples in the base class. Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms competing approaches and owns desired cross-domain generalization ability, indicating the effectiveness of the learned adaptive weights.
Abstract:Imbalanced data pose challenges for deep learning based classification models. One of the most widely-used approaches for tackling imbalanced data is re-weighting, where training samples are associated with different weights in the loss function. Most of existing re-weighting approaches treat the example weights as the learnable parameter and optimize the weights on the meta set, entailing expensive bilevel optimization. In this paper, we propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view. Specifically, we view the training set as an imbalanced distribution over its samples, which is transported by OT to a balanced distribution obtained from the meta set. The weights of the training samples are the probability mass of the imbalanced distribution and learned by minimizing the OT distance between the two distributions. Compared with existing methods, our proposed one disengages the dependence of the weight learning on the concerned classifier at each iteration. Experiments on image, text and point cloud datasets demonstrate that our proposed re-weighting method has excellent performance, achieving state-of-the-art results in many cases and providing a promising tool for addressing the imbalanced classification issue.
Abstract:A topic model is often formulated as a generative model that explains how each word of a document is generated given a set of topics and document-specific topic proportions. It is focused on capturing the word co-occurrences in a document and hence often suffers from poor performance in analyzing short documents. In addition, its parameter estimation often relies on approximate posterior inference that is either not scalable or suffers from large approximation error. This paper introduces a new topic-modeling framework where each document is viewed as a set of word embedding vectors and each topic is modeled as an embedding vector in the same embedding space. Embedding the words and topics in the same vector space, we define a method to measure the semantic difference between the embedding vectors of the words of a document and these of the topics, and optimize the topic embeddings to minimize the expected difference over all documents. Experiments on text analysis demonstrate that the proposed method, which is amenable to mini-batch stochastic gradient descent based optimization and hence scalable to big corpora, provides competitive performance in discovering more coherent and diverse topics and extracting better document representations.
Abstract:Learning from set-structured data is a fundamental problem that has recently attracted increasing attention, where a series of summary networks are introduced to deal with the set input. In fact, many meta-learning problems can be treated as set-input tasks. Most existing summary networks aim to design different architectures for the input set in order to enforce permutation invariance. However, scant attention has been paid to the common cases where different sets in a meta-distribution are closely related and share certain statistical properties. Viewing each set as a distribution over a set of global prototypes, this paper provides a novel optimal transport (OT) based way to improve existing summary networks. To learn the distribution over the global prototypes, we minimize its OT distance to the set empirical distribution over data points, providing a natural unsupervised way to improve the summary network. Since our plug-and-play framework can be applied to many meta-learning problems, we further instantiate it to the cases of few-shot classification and implicit meta generative modeling. Extensive experiments demonstrate that our framework significantly improves the existing summary networks on learning more powerful summary statistics from sets and can be successfully integrated into metric-based few-shot classification and generative modeling applications, providing a promising tool for addressing set-input and meta-learning problems.
Abstract:Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic topics into this task, this paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework, which couples a visual extractor with a deep topic model to guide the learning of a language model. To capture the correlations between the image and text at multiple levels of abstraction and learn the semantic topics from images, we design a variational inference network to build the mapping from image features to textual captions. To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model, including Long Short-Term Memory (LSTM) and Transformer, and jointly optimized. Experiments on public dataset demonstrate that the proposed models, which are competitive with many state-of-the-art approaches in terms of standard evaluation metrics, can be used to both distill interpretable multi-layer topics and generate diverse and coherent captions.