Abstract:To address catastrophic forgetting in Continual Relation Extraction (CRE), many current approaches rely on memory buffers to rehearse previously learned knowledge while acquiring new tasks. Recently, prompt-based methods have emerged as potent alternatives to rehearsal-based strategies, demonstrating strong empirical performance. However, upon analyzing existing prompt-based approaches for CRE, we identified several critical limitations, such as inaccurate prompt selection, inadequate mechanisms for mitigating forgetting in shared parameters, and suboptimal handling of cross-task and within-task variances. To overcome these challenges, we draw inspiration from the relationship between prefix-tuning and mixture of experts, proposing a novel approach that employs a prompt pool for each task, capturing variations within each task while enhancing cross-task variances. Furthermore, we incorporate a generative model to consolidate prior knowledge within shared parameters, eliminating the need for explicit data storage. Extensive experiments validate the efficacy of our approach, demonstrating superior performance over state-of-the-art prompt-based and rehearsal-free methods in continual relation extraction.
Abstract:Drawing inspiration from human learning behaviors, this work proposes a novel approach to mitigate catastrophic forgetting in Prompt-based Continual Learning models by exploiting the relationships between continuously emerging class data. We find that applying human habits of organizing and connecting information can serve as an efficient strategy when training deep learning models. Specifically, by building a hierarchical tree structure based on the expanding set of labels, we gain fresh insights into the data, identifying groups of similar classes could easily cause confusion. Additionally, we delve deeper into the hidden connections between classes by exploring the original pretrained model's behavior through an optimal transport-based approach. From these insights, we propose a novel regularization loss function that encourages models to focus more on challenging knowledge areas, thereby enhancing overall performance. Experimentally, our method demonstrated significant superiority over the most robust state-of-the-art models on various benchmarks.
Abstract:Prompt-based techniques, such as prompt-tuning and prefix-tuning, have gained prominence for their efficiency in fine-tuning large pre-trained models. Despite their widespread adoption, the theoretical foundations of these methods remain limited. For instance, in prefix-tuning, we observe that a key factor in achieving performance parity with full fine-tuning lies in the reparameterization strategy. However, the theoretical principles underpinning the effectiveness of this approach have yet to be thoroughly examined. Our study demonstrates that reparameterization is not merely an engineering trick but is grounded in deep theoretical foundations. Specifically, we show that the reparameterization strategy implicitly encodes a shared structure between prefix key and value vectors. Building on recent insights into the connection between prefix-tuning and mixture of experts models, we further illustrate that this shared structure significantly improves sample efficiency in parameter estimation compared to non-shared alternatives. The effectiveness of prefix-tuning across diverse tasks is empirically confirmed to be enhanced by the shared structure, through extensive experiments in both visual and language domains. Additionally, we uncover similar structural benefits in prompt-tuning, offering new perspectives on its success. Our findings provide theoretical and empirical contributions, advancing the understanding of prompt-based methods and their underlying mechanisms.
Abstract:Exploiting the power of pre-trained models, prompt-based approaches stand out compared to other continual learning solutions in effectively preventing catastrophic forgetting, even with very few learnable parameters and without the need for a memory buffer. While existing prompt-based continual learning methods excel in leveraging prompts for state-of-the-art performance, they often lack a theoretical explanation for the effectiveness of prompting. This paper conducts a theoretical analysis to unravel how prompts bestow such advantages in continual learning, thus offering a new perspective on prompt design. We first show that the attention block of pre-trained models like Vision Transformers inherently encodes a special mixture of experts architecture, characterized by linear experts and quadratic gating score functions. This realization drives us to provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts, thereby inspiring the design of a novel gating mechanism termed Non-linear Residual Gates (NoRGa). Through the incorporation of non-linear activation and residual connection, NoRGa enhances continual learning performance while preserving parameter efficiency. The effectiveness of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and pretraining paradigms.
Abstract:In prediction-based Neural Architecture Search (NAS), performance indicators derived from graph convolutional networks have shown remarkable success. These indicators, achieved by representing feed-forward structures as component graphs through one-hot encoding, face a limitation: their inability to evaluate architecture performance across varying search spaces. In contrast, handcrafted performance indicators (zero-shot NAS), which use the same architecture with random initialization, can generalize across multiple search spaces. Addressing this limitation, we propose a novel approach for zero-shot NAS using deep learning. Our method employs Fourier sum of sines encoding for convolutional kernels, enabling the construction of a computational feed-forward graph with a structure similar to the architecture under evaluation. These encodings are learnable and offer a comprehensive view of the architecture's topological information. An accompanying multi-layer perceptron (MLP) then ranks these architectures based on their encodings. Experimental results show that our approach surpasses previous methods using graph convolutional networks in terms of correlation on the NAS-Bench-201 dataset and exhibits a higher convergence rate. Moreover, our extracted feature representation trained on each NAS benchmark is transferable to other NAS benchmarks, showing promising generalizability across multiple search spaces. The code is available at: https://github.com/minh1409/DFT-NPZS-NAS
Abstract:The ability to detect edges is a fundamental attribute necessary to truly capture visual concepts. In this paper, we prove that edges cannot be represented properly in the first convolutional layer of a neural network, and further show that they are poorly captured in popular neural network architectures such as VGG-16 and ResNet. The neural networks are found to rely on color information, which might vary in unexpected ways outside of the datasets used for their evaluation. To improve their robustness, we propose edge-detection units and show that they reduce performance loss and generate qualitatively different representations. By comparing various models, we show that the robustness of edge detection is an important factor contributing to the robustness of models against color noise.
Abstract:Deep neural networks have achieved impressive performance and become de-facto standard in many tasks. However, phenomena such as adversarial examples and fooling examples hint that the generalization they make is flawed. We argue that the problem roots in their distributed and connected nature and propose remedies inspired by propositional logic. Our experiments show that the proposed models are more local and better at resisting fooling and adversarial examples. By means of an ablation analysis, we reveal insights into adversarial examples and suggest a new hypothesis on their origins.
Abstract:Recently, Yuan et al. (2016) have shown the effectiveness of using Long Short-Term Memory (LSTM) for performing Word Sense Disambiguation (WSD). Their proposed technique outperformed the previous state-of-the-art with several benchmarks, but neither the training data nor the source code was released. This paper presents the results of a reproduction study of this technique using only openly available datasets (GigaWord, SemCore, OMSTI) and software (TensorFlow). From them, it emerged that state-of-the-art results can be obtained with much less data than hinted by Yuan et al. All code and trained models are made freely available.
Abstract:Critical evaluation of word similarity datasets is very important for computational lexical semantics. This short report concerns the sanity check proposed in Batchkarov et al. (2016) to evaluate several popular datasets such as MC, RG and MEN -- the first two reportedly failed. I argue that this test is unstable, offers no added insight, and needs major revision in order to fulfill its purported goal.
Abstract:Error propagation is a common problem in NLP. Reinforcement learning explores erroneous states during training and can therefore be more robust when mistakes are made early in a process. In this paper, we apply reinforcement learning to greedy dependency parsing which is known to suffer from error propagation. Reinforcement learning improves accuracy of both labeled and unlabeled dependencies of the Stanford Neural Dependency Parser, a high performance greedy parser, while maintaining its efficiency. We investigate the portion of errors which are the result of error propagation and confirm that reinforcement learning reduces the occurrence of error propagation.