Abstract:Backdoor attacks have become a critical threat to deep neural networks (DNNs), drawing many research interests. However, most of the studied attacks employ a single type of trigger. Consequently, proposed backdoor defenders often rely on the assumption that triggers would appear in a unified way. In this paper, we show that this naive assumption can create a loophole, allowing more sophisticated backdoor attacks to bypass. We design a novel backdoor attack mechanism that incorporates multiple types of backdoor triggers, focusing on stealthiness and effectiveness. Our journey begins with the intriguing observation that the performance of a backdoor attack in deep learning models, as well as its detectability and removability, are all proportional to the magnitude of the trigger. Based on this correlation, we propose reducing the magnitude of each trigger type and combining them to achieve a strong backdoor relying on the combined trigger while still staying safely under the radar of defenders. Extensive experiments on three standard datasets demonstrate that our method can achieve high attack success rates (ASRs) while consistently bypassing state-of-the-art defenses.
Abstract:In social online platforms, identifying influential seed users to maximize influence spread is a crucial as it can greatly diminish the cost and efforts required for information dissemination. While effective, traditional methods for Multiplex Influence Maximization (MIM) have reached their performance limits, prompting the emergence of learning-based approaches. These novel methods aim for better generalization and scalability for more sizable graphs but face significant challenges, such as (1) inability to handle unknown diffusion patterns and (2) reliance on high-quality training samples. To address these issues, we propose the Reinforced Expert Maximization framework (REM). REM leverages a Propagation Mixture of Experts technique to encode dynamic propagation of large multiplex networks effectively in order to generate enhanced influence propagation. Noticeably, REM treats a generative model as a policy to autonomously generate different seed sets and learn how to improve them from a Reinforcement Learning perspective. Extensive experiments on several real-world datasets demonstrate that REM surpasses state-of-the-art methods in terms of influence spread, scalability, and inference time in influence maximization tasks.
Abstract:This paper presents a comprehensive study on the classification and detection of Silicosis-related lung inflammation. Our main contributions include 1) the creation of a newly curated chest X-ray (CXR) image dataset named SVBCX that is tailored to the nuances of lung inflammation caused by distinct agents, providing a valuable resource for silicosis and pneumonia research community; and 2) we propose a novel deep-learning architecture that integrates graph transformer networks alongside a traditional deep neural network module for the effective classification of silicosis and pneumonia. Additionally, we employ the Balanced Cross-Entropy (BalCE) as a loss function to ensure more uniform learning across different classes, enhancing the model's ability to discern subtle differences in lung conditions. The proposed model architecture and loss function selection aim to improve the accuracy and reliability of inflammation detection, particularly in the context of Silicosis. Furthermore, our research explores the efficacy of an ensemble approach that combines the strengths of diverse model architectures. Experimental results on the constructed dataset demonstrate promising outcomes, showcasing substantial enhancements compared to baseline models. The ensemble of models achieves a macro-F1 score of 0.9749 and AUC ROC scores exceeding 0.99 for each class, underscoring the effectiveness of our approach in accurate and robust lung inflammation classification.
Abstract:Fine-grained image classification, which is a challenging task in computer vision, requires precise differentiation among visually similar object categories. In this paper, we propose 1) a novel module called Residual Relationship Attention (RRA) that leverages the relationships between images within each training batch to effectively integrate visual feature vectors of batch images and 2) a novel technique called Relationship Position Encoding (RPE), which encodes the positions of relationships between original images in a batch and effectively preserves the relationship information between images within the batch. Additionally, we design a novel framework, namely Relationship Batch Integration (RBI), which utilizes RRA in conjunction with RPE, allowing the discernment of vital visual features that may remain elusive when examining a singular image representative of a particular class. Through extensive experiments, our proposed method demonstrates significant improvements in the accuracy of different fine-grained classifiers, with an average increase of $(+2.78\%)$ and $(+3.83\%)$ on the CUB200-2011 and Stanford Dog datasets, respectively, while achieving a state-of-the-art results $(95.79\%)$ on the Stanford Dog dataset. Despite not achieving the same level of improvement as in fine-grained image classification, our method still demonstrates its prowess in leveraging general image classification by attaining a state-of-the-art result of $(93.71\%)$ on the Tiny-Imagenet dataset. Furthermore, our method serves as a plug-in refinement module and can be easily integrated into different networks.
Abstract:Recent advances in text-guided image editing enable users to perform image edits through simple text inputs, leveraging the extensive priors of multi-step diffusion-based text-to-image models. However, these methods often fall short of the speed demands required for real-world and on-device applications due to the costly multi-step inversion and sampling process involved. In response to this, we introduce SwiftEdit, a simple yet highly efficient editing tool that achieve instant text-guided image editing (in 0.23s). The advancement of SwiftEdit lies in its two novel contributions: a one-step inversion framework that enables one-step image reconstruction via inversion and a mask-guided editing technique with our proposed attention rescaling mechanism to perform localized image editing. Extensive experiments are provided to demonstrate the effectiveness and efficiency of SwiftEdit. In particular, SwiftEdit enables instant text-guided image editing, which is extremely faster than previous multi-step methods (at least 50 times faster) while maintain a competitive performance in editing results. Our project page is at: https://swift-edit.github.io/
Abstract:Recent approaches have yielded promising results in distilling multi-step text-to-image diffusion models into one-step ones. The state-of-the-art efficient distillation technique, i.e., SwiftBrushv2 (SBv2), even surpasses the teacher model's performance with limited resources. However, our study reveals its instability when handling different diffusion model backbones due to using a fixed guidance scale within the Variational Score Distillation (VSD) loss. Another weakness of the existing one-step diffusion models is the missing support for negative prompt guidance, which is crucial in practical image generation. This paper presents SNOOPI, a novel framework designed to address these limitations by enhancing the guidance in one-step diffusion models during both training and inference. First, we effectively enhance training stability through Proper Guidance-SwiftBrush (PG-SB), which employs a random-scale classifier-free guidance approach. By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance. Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images. Our experimental results show that our proposed methods significantly improve baseline models across various metrics. Remarkably, we achieve an HPSv2 score of 31.08, setting a new state-of-the-art benchmark for one-step diffusion models.
Abstract:Existing 3D instance segmentation methods frequently encounter issues with over-segmentation, leading to redundant and inaccurate 3D proposals that complicate downstream tasks. This challenge arises from their unsupervised merging approach, where dense 2D instance masks are lifted across frames into point clouds to form 3D candidate proposals without direct supervision. These candidates are then hierarchically merged based on heuristic criteria, often resulting in numerous redundant segments that fail to combine into precise 3D proposals. To overcome these limitations, we propose a 3D-Aware 2D Mask Tracking module that uses robust 3D priors from a 2D mask segmentation and tracking foundation model (SAM-2) to ensure consistent object masks across video frames. Rather than merging all visible superpoints across views to create a 3D mask, our 3D Mask Optimization module leverages a dynamic programming algorithm to select an optimal set of views, refining the superpoints to produce a final 3D proposal for each object. Our approach achieves comprehensive object coverage within the scene while reducing unnecessary proposals, which could otherwise impair downstream applications. Evaluations on ScanNet200 and ScanNet++ confirm the effectiveness of our method, with improvements across Class-Agnostic, Open-Vocabulary, and Open-Ended 3D Instance Segmentation tasks.
Abstract:In this paper, we aim to enhance the performance of SwiftBrush, a prominent one-step text-to-image diffusion model, to be competitive with its multi-step Stable Diffusion counterpart. Initially, we explore the quality-diversity trade-off between SwiftBrush and SD Turbo: the former excels in image diversity, while the latter excels in image quality. This observation motivates our proposed modifications in the training methodology, including better weight initialization and efficient LoRA training. Moreover, our introduction of a novel clamped CLIP loss enhances image-text alignment and results in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models. The project page is available at https://swiftbrushv2.github.io.
Abstract:Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
Abstract:Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model, which is more practical in real-world applications in which full access to a large training set is not available. However, it often leads to overfitting on the small calibration dataset. Several methods have been proposed to address this issue, yet they still rely on only the calibration set for the quantization and they do not validate the quantized model due to the lack of a validation set. In this work, we propose a novel meta-learning based approach to enhance the performance of post-training quantization. Specifically, to mitigate the overfitting problem, instead of only training the quantized model using the original calibration set without any validation during the learning process as in previous PTQ works, in our approach, we both train and validate the quantized model using two different sets of images. In particular, we propose a meta-learning based approach to jointly optimize a transformation network and a quantized model through bi-level optimization. The transformation network modifies the original calibration data and the modified data will be used as the training set to learn the quantized model with the objective that the quantized model achieves a good performance on the original calibration data. Extensive experiments on the widely used ImageNet dataset with different neural network architectures demonstrate that our approach outperforms the state-of-the-art PTQ methods.