Abstract:The University of California--Irvine (UCI) Machine Learning (ML) Repository (UCIMLR) is consistently cited as one of the most popular dataset repositories, hosting hundreds of high-impact datasets. However, a significant portion, including 28.4% of the top 250, cannot be imported via the $\textit{ucimlrepo}$ package that is provided and recommended by the UCIMLR website. Instead, they are hosted as .zip files, containing nonstandard formats that are difficult to import without additional ad hoc processing. To address this issue, here we present $\textit{lucie}$ -- $\underline{l}oad$ $\underline{U}niversity$ $\underline{C}alifornia$ $\underline{I}rvine$ $\underline{e}xamples$ -- a utility that automatically determines the data format and imports many of these previously non-importable datasets, while preserving as much of a tabular data structure as possible. $\textit{lucie}$ was designed using the top 100 most popular datasets and benchmarked on the next 130, where it resulted in a success rate of 95.4% vs. 73.1% for $\textit{ucimlrepo}$. $\textit{lucie}$ is available as a Python package on PyPI with 98% code coverage.
Abstract:This report provides an overview of the challenge hosted at the OpenSUN3D Workshop on Open-Vocabulary 3D Scene Understanding held in conjunction with ICCV 2023. The goal of this workshop series is to provide a platform for exploration and discussion of open-vocabulary 3D scene understanding tasks, including but not limited to segmentation, detection and mapping. We provide an overview of the challenge hosted at the workshop, present the challenge dataset, the evaluation methodology, and brief descriptions of the winning methods. For additional details, please see https://opensun3d.github.io/index_iccv23.html.
Abstract:Head-based signals such as EEG, EMG, EOG, and ECG collected by wearable systems will play a pivotal role in clinical diagnosis, monitoring, and treatment of important brain disorder diseases. However, the real-time transmission of the significant corpus physiological signals over extended periods consumes substantial power and time, limiting the viability of battery-dependent physiological monitoring wearables. This paper presents a novel deep-learning framework employing a variational autoencoder (VAE) for physiological signal compression to reduce wearables' computational complexity and energy consumption. Our approach achieves an impressive compression ratio of 1:293 specifically for spectrogram data, surpassing state-of-the-art compression techniques such as JPEG2000, H.264, Direct Cosine Transform (DCT), and Huffman Encoding, which do not excel in handling physiological signals. We validate the efficacy of the compressed algorithms using collected physiological signals from real patients in the Hospital and deploy the solution on commonly used embedded AI chips (i.e., ARM Cortex V8 and Jetson Nano). The proposed framework achieves a 91% seizure detection accuracy using XGBoost, confirming the approach's reliability, practicality, and scalability.
Abstract:Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms.
Abstract:Table answering questions from business documents has many challenges that require understanding tabular structures, cross-document referencing, and additional numeric computations beyond simple search queries. This paper introduces a novel pipeline, named TabIQA, to answer questions about business document images. TabIQA combines state-of-the-art deep learning techniques 1) to extract table content and structural information from images and 2) to answer various questions related to numerical data, text-based information, and complex queries from structured tables. The evaluation results on VQAonBD 2023 dataset demonstrate the effectiveness of TabIQA in achieving promising performance in answering table-related questions. The TabIQA repository is available at https://github.com/phucty/itabqa.
Abstract:Most of the previous methods for table recognition rely on training datasets containing many richly annotated table images. Detailed table image annotation, e.g., cell or text bounding box annotation, however, is costly and often subjective. In this paper, we propose a weakly supervised model named WSTabNet for table recognition that relies only on HTML (or LaTeX) code-level annotations of table images. The proposed model consists of three main parts: an encoder for feature extraction, a structure decoder for generating table structure, and a cell decoder for predicting the content of each cell in the table. Our system is trained end-to-end by stochastic gradient descent algorithms, requiring only table images and their ground-truth HTML (or LaTeX) representations. To facilitate table recognition with deep learning, we create and release WikiTableSet, the largest publicly available image-based table recognition dataset built from Wikipedia. WikiTableSet contains nearly 4 million English table images, 590K Japanese table images, and 640k French table images with corresponding HTML representation and cell bounding boxes. The extensive experiments on WikiTableSet and two large-scale datasets: FinTabNet and PubTabNet demonstrate that the proposed weakly supervised model achieves better, or similar accuracies compared to the state-of-the-art models on all benchmark datasets.
Abstract:In the Open Data era, a large number of table resources have been made available on the Web and data portals. However, it is difficult to directly utilize such data due to the ambiguity of entities, name variations, heterogeneous schema, missing, or incomplete metadata. To address these issues, we propose a novel approach, namely TabEAno, to semantically annotate table rows toward knowledge graph entities. Specifically, we introduce a "two-cells" lookup strategy bases on the assumption that there is an existing logical relation occurring in the knowledge graph between the two closed cells in the same row of the table. Despite the simplicity of the approach, TabEAno outperforms the state of the art approaches in the two standard datasets e.g, T2D, Limaye with, and in the large-scale Wikipedia tables dataset.
Abstract:This paper presents the design of our system, namely MTab, for Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2019). MTab combines the voting algorithm and the probability models to solve critical problems of the matching tasks. Results on SemTab 2019 show that MTab obtains promising performance for the three matching tasks.
Abstract:Semantic labeling for numerical values is a task of assigning semantic labels to unknown numerical attributes. The semantic labels could be numerical properties in ontologies, instances in knowledge bases, or labeled data that are manually annotated by domain experts. In this paper, we refer to semantic labeling as a retrieval setting where the label of an unknown attribute is assigned by the label of the most relevant attribute in labeled data. One of the greatest challenges is that an unknown attribute rarely has the same set of values with the similar one in the labeled data. To overcome the issue, statistical interpretation of value distribution is taken into account. However, the existing studies assume a specific form of distribution. It is not appropriate in particular to apply open data where there is no knowledge of data in advance. To address these problems, we propose a neural numerical embedding model (EmbNum) to learn useful representation vectors for numerical attributes without prior assumptions on the distribution of data. Then, the "semantic similarities" between the attributes are measured on these representation vectors by the Euclidean distance. Our empirical experiments on City Data and Open Data show that EmbNum significantly outperforms state-of-the-art methods for the task of numerical attribute semantic labeling regarding effectiveness and efficiency.
Abstract:Much recent work on visual recognition aims to scale up learning to massive, noisily-annotated datasets. We address the problem of scaling- up the evaluation of such models to large-scale datasets with noisy labels. Current protocols for doing so require a human user to either vet (re-annotate) a small fraction of the test set and ignore the rest, or else correct errors in annotation as they are found through manual inspection of results. In this work, we re-formulate the problem as one of active testing, and examine strategies for efficiently querying a user so as to obtain an accu- rate performance estimate with minimal vetting. We demonstrate the effectiveness of our proposed active testing framework on estimating two performance metrics, Precision@K and mean Average Precision, for two popular computer vision tasks, multi-label classification and instance segmentation. We further show that our approach is able to save significant human annotation effort and is more robust than alternative evaluation protocols.