Abstract:The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
Abstract:Multi-robot flocking possesses extraordinary advantages over a single-robot system in diverse domains, but it is challenging to ensure safe and optimal performance in congested environments. Hence, this paper is focused on the investigation of distributed optimal flocking control for multiple robots in crowded environments. A heuristic predictive control solution is proposed based on a Gibbs Random Field (GRF), in which bio-inspired potential functions are used to characterize robot-robot and robot-environment interactions. The optimal solution is obtained by maximizing a posteriori joint distribution of the GRF in a certain future time instant. A gradient-based heuristic solution is developed, which could significantly speed up the computation of the optimal control. Mathematical analysis is also conducted to show the validity of the heuristic solution. Multiple collision risk levels are designed to improve the collision avoidance performance of robots in dynamic environments. The proposed heuristic predictive control is evaluated comprehensively from multiple perspectives based on different metrics in a challenging simulation environment. The competence of the proposed algorithm is validated via the comparison with the non-heuristic predictive control and two existing popular flocking control methods. Real-life experiments are also performed using four quadrotor UAVs to further demonstrate the efficiency of the proposed design.
Abstract:Motion planning is a crucial aspect of robot autonomy as it involves identifying a feasible motion path to a destination while taking into consideration various constraints, such as input, safety, and performance constraints, without violating either system or environment boundaries. This becomes particularly challenging when multiple robots run without communication, which compromises their real-time efficiency, safety, and performance. In this paper, we present a learning-based potential field algorithm that incorporates deep reinforcement learning into an artificial potential field (APF). Specifically, we introduce an observation embedding mechanism that pre-processes dynamic information about the environment and develop a soft wall-following rule to improve trajectory smoothness. Our method, while belonging to reactive planning, implicitly encodes environmental properties. Additionally, our approach can scale up to any number of robots and has demonstrated superior performance compared to APF and RL through numerical simulations. Finally, experiments are conducted to highlight the effectiveness of our proposed method.