Abstract:Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner. This work considers a fundamental problem in multi-agent collaboration: consensus seeking. When multiple agents work together, we are interested in how they can reach a consensus through inter-agent negotiation. To that end, this work studies a consensus-seeking task where the state of each agent is a numerical value and they negotiate with each other to reach a consensus value. It is revealed that when not explicitly directed on which strategy should be adopted, the LLM-driven agents primarily use the average strategy for consensus seeking although they may occasionally use some other strategies. Moreover, this work analyzes the impact of the agent number, agent personality, and network topology on the negotiation process. The findings reported in this work can potentially lay the foundations for understanding the behaviors of LLM-driven multi-agent systems for solving more complex tasks. Furthermore, LLM-driven consensus seeking is applied to a multi-robot aggregation task. This application demonstrates the potential of LLM-driven agents to achieve zero-shot autonomous planning for multi-robot collaboration tasks. Project website: westlakeintelligentrobotics.github.io/ConsensusLLM/.
Abstract:Vision-based cooperative motion estimation is an important problem for many multi-robot systems such as cooperative aerial target pursuit. This problem can be formulated as bearing-only cooperative motion estimation, where the visual measurement is modeled as a bearing vector pointing from the camera to the target. The conventional approaches for bearing-only cooperative estimation are mainly based on the framework distributed Kalman filtering (DKF). In this paper, we propose a new optimal bearing-only cooperative estimation algorithm, named spatial-temporal triangulation, based on the method of distributed recursive least squares, which provides a more flexible framework for designing distributed estimators than DKF. The design of the algorithm fully incorporates all the available information and the specific triangulation geometric constraint. As a result, the algorithm has superior estimation performance than the state-of-the-art DKF algorithms in terms of both accuracy and convergence speed as verified by numerical simulation. We rigorously prove the exponential convergence of the proposed algorithm. Moreover, to verify the effectiveness of the proposed algorithm under practical challenging conditions, we develop a vision-based cooperative aerial target pursuit system, which is the first of such fully autonomous systems so far to the best of our knowledge.