Abstract:MAV-capturing-MAV (MCM) is one of the few effective methods for physically countering misused or malicious MAVs.This paper presents a vision-based cooperative MCM system, where multiple pursuer MAVs equipped with onboard vision systems detect, localize, and pursue a target MAV. To enhance robustness, a distributed state estimation and control framework enables the pursuer MAVs to autonomously coordinate their actions. Pursuer trajectories are optimized using Model Predictive Control (MPC) and executed via a low-level SO(3) controller, ensuring smooth and stable pursuit. Once the capture conditions are satisfied, the pursuer MAVs automatically deploy a flying net to intercept the target. These capture conditions are determined based on the predicted motion of the net. To enable real-time decision-making, we propose a lightweight computational method to approximate the net motion, avoiding the prohibitive cost of solving the full net dynamics. The effectiveness of the proposed system is validated through simulations and real-world experiments. In real-world tests, our approach successfully captures a moving target traveling at 4 meters per second with an acceleration of 1 meter per square second, achieving a success rate of 64.7 percent.
Abstract:Vision-based cooperative motion estimation is an important problem for many multi-robot systems such as cooperative aerial target pursuit. This problem can be formulated as bearing-only cooperative motion estimation, where the visual measurement is modeled as a bearing vector pointing from the camera to the target. The conventional approaches for bearing-only cooperative estimation are mainly based on the framework distributed Kalman filtering (DKF). In this paper, we propose a new optimal bearing-only cooperative estimation algorithm, named spatial-temporal triangulation, based on the method of distributed recursive least squares, which provides a more flexible framework for designing distributed estimators than DKF. The design of the algorithm fully incorporates all the available information and the specific triangulation geometric constraint. As a result, the algorithm has superior estimation performance than the state-of-the-art DKF algorithms in terms of both accuracy and convergence speed as verified by numerical simulation. We rigorously prove the exponential convergence of the proposed algorithm. Moreover, to verify the effectiveness of the proposed algorithm under practical challenging conditions, we develop a vision-based cooperative aerial target pursuit system, which is the first of such fully autonomous systems so far to the best of our knowledge.