Abstract:Multimodal foundation models (MMFMs) play a crucial role in various applications, including autonomous driving, healthcare, and virtual assistants. However, several studies have revealed vulnerabilities in these models, such as generating unsafe content by text-to-image models. Existing benchmarks on multimodal models either predominantly assess the helpfulness of these models, or only focus on limited perspectives such as fairness and privacy. In this paper, we present the first unified platform, MMDT (Multimodal DecodingTrust), designed to provide a comprehensive safety and trustworthiness evaluation for MMFMs. Our platform assesses models from multiple perspectives, including safety, hallucination, fairness/bias, privacy, adversarial robustness, and out-of-distribution (OOD) generalization. We have designed various evaluation scenarios and red teaming algorithms under different tasks for each perspective to generate challenging data, forming a high-quality benchmark. We evaluate a range of multimodal models using MMDT, and our findings reveal a series of vulnerabilities and areas for improvement across these perspectives. This work introduces the first comprehensive and unique safety and trustworthiness evaluation platform for MMFMs, paving the way for developing safer and more reliable MMFMs and systems. Our platform and benchmark are available at https://mmdecodingtrust.github.io/.
Abstract:Agents based on large language models (LLMs) have demonstrated strong capabilities in a wide range of complex, real-world applications. However, LLM agents with a compromised memory bank may easily produce harmful outputs when the past records retrieved for demonstration are malicious. In this paper, we propose a novel Memory INJection Attack, MINJA, that enables the injection of malicious records into the memory bank by only interacting with the agent via queries and output observations. These malicious records are designed to elicit a sequence of malicious reasoning steps leading to undesirable agent actions when executing the victim user's query. Specifically, we introduce a sequence of bridging steps to link the victim query to the malicious reasoning steps. During the injection of the malicious record, we propose an indication prompt to guide the agent to autonomously generate our designed bridging steps. We also propose a progressive shortening strategy that gradually removes the indication prompt, such that the malicious record will be easily retrieved when processing the victim query comes after. Our extensive experiments across diverse agents demonstrate the effectiveness of MINJA in compromising agent memory. With minimal requirements for execution, MINJA enables any user to influence agent memory, highlighting practical risks of LLM agents.
Abstract:The lifecycle of large language models (LLMs) is far more complex than that of traditional machine learning models, involving multiple training stages, diverse data sources, and varied inference methods. While prior research on data poisoning attacks has primarily focused on the safety vulnerabilities of LLMs, these attacks face significant challenges in practice. Secure data collection, rigorous data cleaning, and the multistage nature of LLM training make it difficult to inject poisoned data or reliably influence LLM behavior as intended. Given these challenges, this position paper proposes rethinking the role of data poisoning and argue that multi-faceted studies on data poisoning can advance LLM development. From a threat perspective, practical strategies for data poisoning attacks can help evaluate and address real safety risks to LLMs. From a trustworthiness perspective, data poisoning can be leveraged to build more robust LLMs by uncovering and mitigating hidden biases, harmful outputs, and hallucinations. Moreover, from a mechanism perspective, data poisoning can provide valuable insights into LLMs, particularly the interplay between data and model behavior, driving a deeper understanding of their underlying mechanisms.
Abstract:Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.
Abstract:Large Language Model (LLM) agents have become increasingly prevalent across various real-world applications. They enhance decision-making by storing private user-agent interactions in the memory module for demonstrations, introducing new privacy risks for LLM agents. In this work, we systematically investigate the vulnerability of LLM agents to our proposed Memory EXTRaction Attack (MEXTRA) under a black-box setting. To extract private information from memory, we propose an effective attacking prompt design and an automated prompt generation method based on different levels of knowledge about the LLM agent. Experiments on two representative agents demonstrate the effectiveness of MEXTRA. Moreover, we explore key factors influencing memory leakage from both the agent's and the attacker's perspectives. Our findings highlight the urgent need for effective memory safeguards in LLM agent design and deployment.
Abstract:With the integration of large language models (LLMs), embodied agents have strong capabilities to execute complicated instructions in natural language, paving a way for the potential deployment of embodied robots. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in real world. To study this issue, we present SafeAgentBench -- a new benchmark for safety-aware task planning of embodied LLM agents. SafeAgentBench includes: (1) a new dataset with 750 tasks, covering 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that the best-performing baseline gets 69% success rate for safe tasks, but only 5% rejection rate for hazardous tasks, indicating significant safety risks. More details and codes are available at https://github.com/shengyin1224/SafeAgentBench.
Abstract:Backdoor attacks aim to inject a backdoor into a classifier such that it predicts any input with an attacker-chosen backdoor trigger as an attacker-chosen target class. Existing backdoor attacks require either retraining the classifier with some clean data or modifying the model's architecture. As a result, they are 1) not applicable when clean data is unavailable, 2) less efficient when the model is large, and 3) less stealthy due to architecture changes. In this work, we propose DFBA, a novel retraining-free and data-free backdoor attack without changing the model architecture. Technically, our proposed method modifies a few parameters of a classifier to inject a backdoor. Through theoretical analysis, we verify that our injected backdoor is provably undetectable and unremovable by various state-of-the-art defenses under mild assumptions. Our evaluation on multiple datasets further demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100% attack success rates, and 3) bypasses six existing state-of-the-art defenses. Moreover, our comparison with a state-of-the-art non-data-free backdoor attack shows our attack is more stealthy and effective against various defenses while achieving less classification accuracy loss.
Abstract:Scholarly peer review is a cornerstone of scientific advancement, but the system is under strain due to increasing manuscript submissions and the labor-intensive nature of the process. Recent advancements in large language models (LLMs) have led to their integration into peer review, with promising results such as substantial overlaps between LLM- and human-generated reviews. However, the unchecked adoption of LLMs poses significant risks to the integrity of the peer review system. In this study, we comprehensively analyze the vulnerabilities of LLM-generated reviews by focusing on manipulation and inherent flaws. Our experiments show that injecting covert deliberate content into manuscripts allows authors to explicitly manipulate LLM reviews, leading to inflated ratings and reduced alignment with human reviews. In a simulation, we find that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings. Implicit manipulation, where authors strategically highlight minor limitations in their papers, further demonstrates LLMs' susceptibility compared to human reviewers, with a 4.5 times higher consistency with disclosed limitations. Additionally, LLMs exhibit inherent flaws, such as potentially assigning higher ratings to incomplete papers compared to full papers and favoring well-known authors in single-blind review process. These findings highlight the risks of over-reliance on LLMs in peer review, underscoring that we are not yet ready for widespread adoption and emphasizing the need for robust safeguards.
Abstract:Artificial Intelligence (AI) has become essential in modern healthcare, with large language models (LLMs) offering promising advances in clinical decision-making. Traditional model-based approaches, including those leveraging in-context demonstrations and those with specialized medical fine-tuning, have demonstrated strong performance in medical language processing but struggle with real-time adaptability, multi-step reasoning, and handling complex medical tasks. Agent-based AI systems address these limitations by incorporating reasoning traces, tool selection based on context, knowledge retrieval, and both short- and long-term memory. These additional features enable the medical AI agent to handle complex medical scenarios where decision-making should be built on real-time interaction with the environment. Therefore, unlike conventional model-based approaches that treat medical queries as isolated questions, medical AI agents approach them as complex tasks and behave more like human doctors. In this paper, we study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation. In particular, we consider the emergent o1 model and examine its impact on agents' reasoning, tool-use adaptability, and real-time information retrieval across diverse clinical scenarios, including high-stakes settings such as intensive care units (ICUs). Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools that support better patient outcomes and decision-making efficacy in clinical practice.
Abstract:This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.