Abstract:Text-to-image (T2I) models have been shown to be vulnerable to misuse, particularly in generating not-safe-for-work (NSFW) content, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. Extensive experiments across three datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 7.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
Abstract:Recent advancements in large audio-language models (LALMs) have enabled speech-based user interactions, significantly enhancing user experience and accelerating the deployment of LALMs in real-world applications. However, ensuring the safety of LALMs is crucial to prevent risky outputs that may raise societal concerns or violate AI regulations. Despite the importance of this issue, research on jailbreaking LALMs remains limited due to their recent emergence and the additional technical challenges they present compared to attacks on DNN-based audio models. Specifically, the audio encoders in LALMs, which involve discretization operations, often lead to gradient shattering, hindering the effectiveness of attacks relying on gradient-based optimizations. The behavioral variability of LALMs further complicates the identification of effective (adversarial) optimization targets. Moreover, enforcing stealthiness constraints on adversarial audio waveforms introduces a reduced, non-convex feasible solution space, further intensifying the challenges of the optimization process. To overcome these challenges, we develop AdvWave, the first jailbreak framework against LALMs. We propose a dual-phase optimization method that addresses gradient shattering, enabling effective end-to-end gradient-based optimization. Additionally, we develop an adaptive adversarial target search algorithm that dynamically adjusts the adversarial optimization target based on the response patterns of LALMs for specific queries. To ensure that adversarial audio remains perceptually natural to human listeners, we design a classifier-guided optimization approach that generates adversarial noise resembling common urban sounds. Extensive evaluations on multiple advanced LALMs demonstrate that AdvWave outperforms baseline methods, achieving a 40% higher average jailbreak attack success rate.
Abstract:Vision Language Models (VLMs) have revolutionized the creation of generalist web agents, empowering them to autonomously complete diverse tasks on real-world websites, thereby boosting human efficiency and productivity. However, despite their remarkable capabilities, the safety and security of these agents against malicious attacks remain critically underexplored, raising significant concerns about their safe deployment. To uncover and exploit such vulnerabilities in web agents, we provide AdvWeb, a novel black-box attack framework designed against web agents. AdvWeb trains an adversarial prompter model that generates and injects adversarial prompts into web pages, misleading web agents into executing targeted adversarial actions such as inappropriate stock purchases or incorrect bank transactions, actions that could lead to severe real-world consequences. With only black-box access to the web agent, we train and optimize the adversarial prompter model using DPO, leveraging both successful and failed attack strings against the target agent. Unlike prior approaches, our adversarial string injection maintains stealth and control: (1) the appearance of the website remains unchanged before and after the attack, making it nearly impossible for users to detect tampering, and (2) attackers can modify specific substrings within the generated adversarial string to seamlessly change the attack objective (e.g., purchasing stocks from a different company), enhancing attack flexibility and efficiency. We conduct extensive evaluations, demonstrating that AdvWeb achieves high success rates in attacking SOTA GPT-4V-based VLM agent across various web tasks. Our findings expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing the urgent need for developing more reliable web agents and effective defenses. Our code and data are available at https://ai-secure.github.io/AdvWeb/ .
Abstract:Generalist web agents have evolved rapidly and demonstrated remarkable potential. However, there are unprecedented safety risks associated with these them, which are nearly unexplored so far. In this work, we aim to narrow this gap by conducting the first study on the privacy risks of generalist web agents in adversarial environments. First, we present a threat model that discusses the adversarial targets, constraints, and attack scenarios. Particularly, we consider two types of adversarial targets: stealing users' specific personally identifiable information (PII) or stealing the entire user request. To achieve these objectives, we propose a novel attack method, termed Environmental Injection Attack (EIA). This attack injects malicious content designed to adapt well to different environments where the agents operate, causing them to perform unintended actions. This work instantiates EIA specifically for the privacy scenario. It inserts malicious web elements alongside persuasive instructions that mislead web agents into leaking private information, and can further leverage CSS and JavaScript features to remain stealthy. We collect 177 actions steps that involve diverse PII categories on realistic websites from the Mind2Web dataset, and conduct extensive experiments using one of the most capable generalist web agent frameworks to date, SeeAct. The results demonstrate that EIA achieves up to 70% ASR in stealing users' specific PII. Stealing full user requests is more challenging, but a relaxed version of EIA can still achieve 16% ASR. Despite these concerning results, it is important to note that the attack can still be detectable through careful human inspection, highlighting a trade-off between high autonomy and security. This leads to our detailed discussion on the efficacy of EIA under different levels of human supervision as well as implications on defenses for generalist web agents.
Abstract:We present ChatScene, a Large Language Model (LLM)-based agent that leverages the capabilities of LLMs to generate safety-critical scenarios for autonomous vehicles. Given unstructured language instructions, the agent first generates textually described traffic scenarios using LLMs. These scenario descriptions are subsequently broken down into several sub-descriptions for specified details such as behaviors and locations of vehicles. The agent then distinctively transforms the textually described sub-scenarios into domain-specific languages, which then generate actual code for prediction and control in simulators, facilitating the creation of diverse and complex scenarios within the CARLA simulation environment. A key part of our agent is a comprehensive knowledge retrieval component, which efficiently translates specific textual descriptions into corresponding domain-specific code snippets by training a knowledge database containing the scenario description and code pairs. Extensive experimental results underscore the efficacy of ChatScene in improving the safety of autonomous vehicles. For instance, the scenarios generated by ChatScene show a 15% increase in collision rates compared to state-of-the-art baselines when tested against different reinforcement learning-based ego vehicles. Furthermore, we show that by using our generated safety-critical scenarios to fine-tune different RL-based autonomous driving models, they can achieve a 9% reduction in collision rates, surpassing current SOTA methods. ChatScene effectively bridges the gap between textual descriptions of traffic scenarios and practical CARLA simulations, providing a unified way to conveniently generate safety-critical scenarios for safety testing and improvement for AVs.
Abstract:This paper introduces KnowHalu, a novel approach for detecting hallucinations in text generated by large language models (LLMs), utilizing step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism. As LLMs are increasingly applied across various domains, ensuring that their outputs are not hallucinated is critical. Recognizing the limitations of existing approaches that either rely on the self-consistency check of LLMs or perform post-hoc fact-checking without considering the complexity of queries or the form of knowledge, KnowHalu proposes a two-phase process for hallucination detection. In the first phase, it identifies non-fabrication hallucinations--responses that, while factually correct, are irrelevant or non-specific to the query. The second phase, multi-form based factual checking, contains five key steps: reasoning and query decomposition, knowledge retrieval, knowledge optimization, judgment generation, and judgment aggregation. Our extensive evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks, e.g., improving by 15.65% in QA tasks and 5.50% in summarization tasks, highlighting its effectiveness and versatility in detecting hallucinations in LLM-generated content.
Abstract:Multi-sensor fusion systems (MSFs) play a vital role as the perception module in modern autonomous vehicles (AVs). Therefore, ensuring their robustness against common and realistic adversarial semantic transformations, such as rotation and shifting in the physical world, is crucial for the safety of AVs. While empirical evidence suggests that MSFs exhibit improved robustness compared to single-modal models, they are still vulnerable to adversarial semantic transformations. Despite the proposal of empirical defenses, several works show that these defenses can be attacked again by new adaptive attacks. So far, there is no certified defense proposed for MSFs. In this work, we propose the first robustness certification framework COMMIT certify robustness of multi-sensor fusion systems against semantic attacks. In particular, we propose a practical anisotropic noise mechanism that leverages randomized smoothing with multi-modal data and performs a grid-based splitting method to characterize complex semantic transformations. We also propose efficient algorithms to compute the certification in terms of object detection accuracy and IoU for large-scale MSF models. Empirically, we evaluate the efficacy of COMMIT in different settings and provide a comprehensive benchmark of certified robustness for different MSF models using the CARLA simulation platform. We show that the certification for MSF models is at most 48.39% higher than that of single-modal models, which validates the advantages of MSF models. We believe our certification framework and benchmark will contribute an important step towards certifiably robust AVs in practice.
Abstract:Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance - where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives - including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.
Abstract:As shown by recent studies, machine intelligence-enabled systems are vulnerable to test cases resulting from either adversarial manipulation or natural distribution shifts. This has raised great concerns about deploying machine learning algorithms for real-world applications, especially in the safety-critical domains such as autonomous driving (AD). On the other hand, traditional AD testing on naturalistic scenarios requires hundreds of millions of driving miles due to the high dimensionality and rareness of the safety-critical scenarios in the real world. As a result, several approaches for autonomous driving evaluation have been explored, which are usually, however, based on different simulation platforms, types of safety-critical scenarios, scenario generation algorithms, and driving route variations. Thus, despite a large amount of effort in autonomous driving testing, it is still challenging to compare and understand the effectiveness and efficiency of different testing scenario generation algorithms and testing mechanisms under similar conditions. In this paper, we aim to provide the first unified platform SafeBench to integrate different types of safety-critical testing scenarios, scenario generation algorithms, and other variations such as driving routes and environments. Meanwhile, we implement 4 deep reinforcement learning-based AD algorithms with 4 types of input (e.g., bird's-eye view, camera) to perform fair comparisons on SafeBench. We find our generated testing scenarios are indeed more challenging and observe the trade-off between the performance of AD agents under benign and safety-critical testing scenarios. We believe our unified platform SafeBench for large-scale and effective autonomous driving testing will motivate the development of new testing scenario generation and safe AD algorithms. SafeBench is available at https://safebench.github.io.
Abstract:Recent studies show that pre-trained language models (LMs) are vulnerable to textual adversarial attacks. However, existing attack methods either suffer from low attack success rates or fail to search efficiently in the exponentially large perturbation space. We propose an efficient and effective framework SemAttack to generate natural adversarial text by constructing different semantic perturbation functions. In particular, SemAttack optimizes the generated perturbations constrained on generic semantic spaces, including typo space, knowledge space (e.g., WordNet), contextualized semantic space (e.g., the embedding space of BERT clusterings), or the combination of these spaces. Thus, the generated adversarial texts are more semantically close to the original inputs. Extensive experiments reveal that state-of-the-art (SOTA) large-scale LMs (e.g., DeBERTa-v2) and defense strategies (e.g., FreeLB) are still vulnerable to SemAttack. We further demonstrate that SemAttack is general and able to generate natural adversarial texts for different languages (e.g., English and Chinese) with high attack success rates. Human evaluations also confirm that our generated adversarial texts are natural and barely affect human performance. Our code is publicly available at https://github.com/AI-secure/SemAttack.