Abstract:Large Language Models (LLMs) have been widely used to generate responses on social topics due to their world knowledge and generative capabilities. Beyond reasoning and generation performance, political bias is an essential issue that warrants attention. Political bias, as a universal phenomenon in human society, may be transferred to LLMs and distort LLMs' behaviors of information acquisition and dissemination with humans, leading to unequal access among different groups of people. To prevent LLMs from reproducing and reinforcing political biases, and to encourage fairer LLM-human interactions, comprehensively examining political bias in popular LLMs becomes urgent and crucial. In this study, we systematically measure the political biases in a wide range of LLMs, using a curated set of questions addressing political bias in various contexts. Our findings reveal distinct patterns in how LLMs respond to political topics. For highly polarized topics, most LLMs exhibit a pronounced left-leaning bias. Conversely, less polarized topics elicit greater consensus, with similar response patterns across different LLMs. Additionally, we analyze how LLM characteristics, including release date, model scale, and region of origin affect political bias. The results indicate political biases evolve with model scale and release date, and are also influenced by regional factors of LLMs.
Abstract:Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems.
Abstract:Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.
Abstract:Text-to-image generative models based on latent diffusion models (LDM) have demonstrated their outstanding ability in generating high-quality and high-resolution images according to language prompt. Based on these powerful latent diffusion models, various fine-tuning methods have been proposed to achieve the personalization of text-to-image diffusion models such as artistic style adaptation and human face transfer. However, the unauthorized usage of data for model personalization has emerged as a prevalent concern in relation to copyright violations. For example, a malicious user may use the fine-tuning technique to generate images which mimic the style of a painter without his/her permission. In light of this concern, we have proposed FT-Shield, a watermarking approach specifically designed for the fine-tuning of text-to-image diffusion models to aid in detecting instances of infringement. We develop a novel algorithm for the generation of the watermark to ensure that the watermark on the training images can be quickly and accurately transferred to the generated images of text-to-image diffusion models. A watermark will be detected on an image by a binary watermark detector if the image is generated by a model that has been fine-tuned using the protected watermarked images. Comprehensive experiments were conducted to validate the effectiveness of FT-Shield.
Abstract:In this paper, we study the adversarial attack and defence problem in deep learning from the perspective of Fourier analysis. We first explicitly compute the Fourier transform of deep ReLU neural networks and show that there exist decaying but non-zero high frequency components in the Fourier spectrum of neural networks. We demonstrate that the vulnerability of neural networks towards adversarial samples can be attributed to these insignificant but non-zero high frequency components. Based on this analysis, we propose to use a simple post-averaging technique to smooth out these high frequency components to improve the robustness of neural networks against adversarial attacks. Experimental results on the ImageNet dataset have shown that our proposed method is universally effective to defend many existing adversarial attacking methods proposed in the literature, including FGSM, PGD, DeepFool and C&W attacks. Our post-averaging method is simple since it does not require any re-training, and meanwhile it can successfully defend over 95% of the adversarial samples generated by these methods without introducing any significant performance degradation (less than 1%) on the original clean images.