Abstract:Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems.
Abstract:Query Autocomplete (QAC) is a critical feature in modern search engines, facilitating user interaction by predicting search queries based on input prefixes. Despite its widespread adoption, the absence of large-scale, realistic datasets has hindered advancements in QAC system development. This paper addresses this gap by introducing AmazonQAC, a new QAC dataset sourced from Amazon Search logs, comprising 395M samples. The dataset includes actual sequences of user-typed prefixes leading to final search terms, as well as session IDs and timestamps that support modeling the context-dependent aspects of QAC. We assess Prefix Trees, semantic retrieval, and Large Language Models (LLMs) with and without finetuning. We find that finetuned LLMs perform best, particularly when incorporating contextual information. However, even our best system achieves only half of what we calculate is theoretically possible on our test data, which implies QAC is a challenging problem that is far from solved with existing systems. This contribution aims to stimulate further research on QAC systems to better serve user needs in diverse environments. We open-source this data on Hugging Face at https://huggingface.co/datasets/amazon/AmazonQAC.
Abstract:The rapid introduction of new brand names into everyday language poses a unique challenge for e-commerce spelling correction services, which must distinguish genuine misspellings from novel brand names that use unconventional spelling. We seek to address this challenge via Retrieval Augmented Generation (RAG). On this approach, product names are retrieved from a catalog and incorporated into the context used by a large language model (LLM) that has been fine-tuned to do contextual spelling correction. Through quantitative evaluation and qualitative error analyses, we find improvements in spelling correction utilizing the RAG framework beyond a stand-alone LLM. We also demonstrate the value of additional finetuning of the LLM to incorporate retrieved context.
Abstract:It is often advantageous to train models on a subset of the available train examples, because the examples are of variable quality or because one would like to train with fewer examples, without sacrificing performance. We present Gradient Information Optimization (GIO), a scalable, task-agnostic approach to this data selection problem that requires only a small set of (unlabeled) examples representing a target distribution. GIO begins from a natural, information-theoretic objective that is intractable in practice. Our contribution is in showing that it can be made highly scalable through a simple relaxation of the objective and a highly efficient implementation. In experiments with machine translation, spelling correction, and image recognition, we show that GIO delivers outstanding results with very small train sets. These findings are robust to different representation models and hyperparameters for GIO itself. GIO is task- and domain-agnostic and can be applied out-of-the-box to new datasets and domains.