Abstract:The rapid growth of scholarly submissions has overwhelmed traditional peer review systems, driving the need for intelligent automation to preserve scientific rigor. While large language models (LLMs) show promise in automating manuscript critiques, their ability to synthesize high-stakes meta-reviews, which require conflict-aware reasoning and consensus derivation, remains underdeveloped. Existing methods fail to effectively handle conflicting viewpoints within differing opinions, and often introduce additional cognitive biases, such as anchoring effects and conformity bias.To overcome these limitations, we propose the Cognitive Alignment Framework (CAF), a dual-process architecture that transforms LLMs into adaptive scientific arbitrators. By operationalizing Kahneman's dual-process theory, CAF introduces a three-step cognitive pipeline: review initialization, incremental integration, and cognitive alignment.Empirical validation shows that CAF outperforms existing LLM-based methods, with sentiment consistency gains reaching up to 19.47\% and content consistency improving by as much as 12.95\%.
Abstract:Image tokenization has significantly advanced visual generation and multimodal modeling, particularly when paired with autoregressive models. However, current methods face challenges in balancing efficiency and fidelity: high-resolution image reconstruction either requires an excessive number of tokens or compromises critical details through token reduction. To resolve this, we propose Latent Consistency Tokenizer (Layton) that bridges discrete visual tokens with the compact latent space of pre-trained Latent Diffusion Models (LDMs), enabling efficient representation of 1024x1024 images using only 256 tokens-a 16 times compression over VQGAN. Layton integrates a transformer encoder, a quantized codebook, and a latent consistency decoder. Direct application of LDM as the decoder results in color and brightness discrepancies. Thus, we convert it to latent consistency decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervision. Experiments demonstrate Layton's superiority in high-fidelity reconstruction, with 10.8 reconstruction Frechet Inception Distance on MSCOCO-2017 5K benchmark for 1024x1024 image reconstruction. We also extend Layton to a text-to-image generation model, LaytonGen, working in autoregression. It achieves 0.73 score on GenEval benchmark, surpassing current state-of-the-art methods. Project homepage: https://github.com/OPPO-Mente-Lab/Layton
Abstract:Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation.
Abstract:Accurately restoring topology is both challenging and crucial in tubular structure extraction tasks, such as blood vessel segmentation and road network extraction. Diverging from traditional approaches based on pixel-level classification, our proposed method, named GraphMorph, focuses on branch-level features of tubular structures to achieve more topologically accurate predictions. GraphMorph comprises two main components: a Graph Decoder and a Morph Module. Utilizing multi-scale features extracted from an image patch by the segmentation network, the Graph Decoder facilitates the learning of branch-level features and generates a graph that accurately represents the tubular structure in this patch. The Morph Module processes two primary inputs: the graph and the centerline probability map, provided by the Graph Decoder and the segmentation network, respectively. Employing a novel SkeletonDijkstra algorithm, the Morph Module produces a centerline mask that aligns with the predicted graph. Furthermore, we observe that employing centerline masks predicted by GraphMorph significantly reduces false positives in the segmentation task, which is achieved by a simple yet effective post-processing strategy. The efficacy of our method in the centerline extraction and segmentation tasks has been substantiated through experimental evaluations across various datasets. Source code will be released soon.
Abstract:Outfit generation is a challenging task in the field of fashion technology, in which the aim is to create a collocated set of fashion items that complement a given set of items. Previous studies in this area have been limited to generating a unique set of fashion items based on a given set of items, without providing additional options to users. This lack of a diverse range of choices necessitates the development of a more versatile framework. However, when the task of generating collocated and diversified outfits is approached with multimodal image-to-image translation methods, it poses a challenging problem in terms of non-aligned image translation, which is hard to address with existing methods. In this research, we present FCBoost-Net, a new framework for outfit generation that leverages the power of pre-trained generative models to produce multiple collocated and diversified outfits. Initially, FCBoost-Net randomly synthesizes multiple sets of fashion items, and the compatibility of the synthesized sets is then improved in several rounds using a novel fashion compatibility booster. This approach was inspired by boosting algorithms and allows the performance to be gradually improved in multiple steps. Empirical evidence indicates that the proposed strategy can improve the fashion compatibility of randomly synthesized fashion items as well as maintain their diversity. Extensive experiments confirm the effectiveness of our proposed framework with respect to visual authenticity, diversity, and fashion compatibility.
Abstract:Unsupervised Graph Domain Adaptation (UGDA) seeks to bridge distribution shifts between domains by transferring knowledge from labeled source graphs to given unlabeled target graphs. Existing UGDA methods primarily focus on aligning features in the latent space learned by graph neural networks (GNNs) across domains, often overlooking structural shifts, resulting in limited effectiveness when addressing structurally complex transfer scenarios. Given the sensitivity of GNNs to local structural features, even slight discrepancies between source and target graphs could lead to significant shifts in node embeddings, thereby reducing the effectiveness of knowledge transfer. To address this issue, we introduce a novel approach for UGDA called Target-Domain Structural Smoothing (TDSS). TDSS is a simple and effective method designed to perform structural smoothing directly on the target graph, thereby mitigating structural distribution shifts and ensuring the consistency of node representations. Specifically, by integrating smoothing techniques with neighborhood sampling, TDSS maintains the structural coherence of the target graph while mitigating the risk of over-smoothing. Our theoretical analysis shows that TDSS effectively reduces target risk by improving model smoothness. Empirical results on three real-world datasets demonstrate that TDSS outperforms recent state-of-the-art baselines, achieving significant improvements across six transfer scenarios. The code is available in https://github.com/cwei01/TDSS.
Abstract:In current multimodal tasks, models typically freeze the encoder and decoder while adapting intermediate layers to task-specific goals, such as region captioning. Region-level visual understanding presents significant challenges for large-scale vision-language models. While limited spatial awareness is a known issue, coarse-grained pretraining, in particular, exacerbates the difficulty of optimizing latent representations for effective encoder-decoder alignment. We propose AlignCap, a framework designed to enhance region-level understanding through fine-grained alignment of latent spaces. Our approach introduces a novel latent feature refinement module that enhances conditioned latent space representations to improve region-level captioning performance. We also propose an innovative alignment strategy, the semantic space alignment module, which boosts the quality of multimodal representations. Additionally, we incorporate contrastive learning in a novel manner within both modules to further enhance region-level captioning performance. To address spatial limitations, we employ a General Object Detection (GOD) method as a data preprocessing pipeline that enhances spatial reasoning at the regional level. Extensive experiments demonstrate that our approach significantly improves region-level captioning performance across various tasks
Abstract:With the rapid development of stereoscopic display technologies, especially glasses-free 3D screens, and virtual reality devices, stereoscopic conversion has become an important task to address the lack of high-quality stereoscopic image and video resources. Current stereoscopic conversion algorithms typically struggle to balance reconstruction performance and inference efficiency. This paper proposes a planar video real-time stereoscopic conversion network based on multi-plane images (MPI), which consists of a detail branch for generating MPI and a depth-semantic branch for perceiving depth information. Unlike models that depend on explicit depth map inputs, the proposed method employs a lightweight depth-semantic branch to extract depth-aware features implicitly. To optimize the lightweight branch, a heavy training but light inference strategy is adopted, which involves designing a coarse-to-fine auxiliary branch that is only used during the training stage. In addition, the proposed method simplifies the MPI rendering process for stereoscopic conversion scenarios to further accelerate the inference. Experimental results demonstrate that the proposed method can achieve comparable performance to some state-of-the-art (SOTA) models and support real-time inference at 2K resolution. Compared to the SOTA TMPI algorithm, the proposed method obtains similar subjective quality while achieving over $40\times$ inference acceleration.
Abstract:As trustworthy AI continues to advance, the fairness issue in recommendations has received increasing attention. A recommender system is considered unfair when it produces unequal outcomes for different user groups based on user-sensitive attributes (e.g., age, gender). Some researchers have proposed data augmentation-based methods aiming at alleviating user-level unfairness by altering the skewed distribution of training data among various user groups. Despite yielding promising results, they often rely on fairness-related assumptions that may not align with reality, potentially reducing the data quality and negatively affecting model effectiveness. To tackle this issue, in this paper, we study how to implement high-quality data augmentation to improve recommendation fairness. Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework aiming at improving fairness in recommender system. First, FairDgcl develops an adversarial contrastive network with a view generator and a view discriminator to learn generating fair augmentation strategies in an adversarial style. Then, we propose two dynamic, learnable models to generate contrastive views within contrastive learning framework, which automatically fine-tune the augmentation strategies. Meanwhile, we theoretically show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy. Lastly, comprehensive experiments conducted on four real-world datasets demonstrate the effectiveness of the proposed FairDgcl.
Abstract:In image editing tasks, high-quality text editing capabilities can significantly reduce human and material resource costs. Current methods rely heavily on training data based on OCR text segment detection, where the text is tightly aligned with the mask area. This reliance creates a strong dependency on the mask area and lacks modules for adjusting text spacing and size in various scenarios. When the amount of text to be edited does not match the modification area or when the mask area is too large, significant issues may arise. Furthermore, no existing methods have explored controllable style transfer for text editing.To address these challenges, we propose TextMaster, a solution capable of accurately editing text with high realism and proper layout in any scenario and image area. Our approach employs adaptive standard letter spacing as guidance during training and uses adaptive mask boosting to prevent the leakage of text position and size information. We also utilize an attention mechanism to calculate the bounding box regression loss for each character, making text layout methods learnable across different scenarios. By injecting high-resolution standard font information and applying perceptual loss in the text editing area, we further enhance text rendering accuracy and fidelity. Additionally, we achieve style consistency between the modified and target text through a novel style injection method. Extensive qualitative and quantitative evaluations demonstrate that our method outperforms all existing approaches.