Abstract:Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
Abstract:Object navigation in multi-floor environments presents a formidable challenge in robotics, requiring sophisticated spatial reasoning and adaptive exploration strategies. Traditional approaches have primarily focused on single-floor scenarios, overlooking the complexities introduced by multi-floor structures. To address these challenges, we first propose a Multi-floor Navigation Policy (MFNP) and implement it in Zero-Shot object navigation tasks. Our framework comprises three key components: (i) Multi-floor Navigation Policy, which enables an agent to explore across multiple floors; (ii) Multi-modal Large Language Models (MLLMs) for reasoning in the navigation process; and (iii) Inter-Floor Navigation, ensuring efficient floor transitions. We evaluate MFNP on the Habitat-Matterport 3D (HM3D) and Matterport 3D (MP3D) datasets, both include multi-floor scenes. Our experiment results demonstrate that MFNP significantly outperforms all the existing methods in Zero-Shot object navigation, achieving higher success rates and improved exploration efficiency. Ablation studies further highlight the effectiveness of each component in addressing the unique challenges of multi-floor navigation. Meanwhile, we conducted real-world experiments to evaluate the feasibility of our policy. Upon deployment of MFNP, the Unitree quadruped robot demonstrated successful multi-floor navigation and found the target object in a completely unseen environment. By introducing MFNP, we offer a new paradigm for tackling complex, multi-floor environments in object navigation tasks, opening avenues for future research in visual-based navigation in realistic, multi-floor settings.
Abstract:Non-invasive mobile electroencephalography (EEG) acquisition systems have been utilized for long-term monitoring of seizures, yet they suffer from limited battery life. Resistive random access memory (RRAM) is widely used in computing-in-memory(CIM) systems, which offers an ideal platform for reducing the computational energy consumption of seizure prediction algorithms, potentially solving the endurance issues of mobile EEG systems. To address this challenge, inspired by neuronal mechanisms, we propose a RRAM-based bio-inspired circuit system for correlation feature extraction and seizure prediction. This system achieves a high average sensitivity of 91.2% and a low false positive rate per hour (FPR/h) of 0.11 on the CHB-MIT seizure dataset. The chip under simulation demonstrates an area of approximately 0.83 mm2 and a latency of 62.2 {\mu}s. Power consumption is recorded at 24.4 mW during the feature extraction phase and 19.01 mW in the seizure prediction phase, with a cumulative energy consumption of 1.515 {\mu}J for a 3-second window data processing, predicting 29.2 minutes ahead. This method exhibits an 81.3% reduction in computational energy relative to the most efficient existing seizure prediction approaches, establishing a new benchmark for energy efficiency.
Abstract:Online signature verification plays a pivotal role in security infrastructures. However, conventional online signature verification models pose significant risks to data privacy, especially during training processes. To mitigate these concerns, we propose a novel federated learning framework that leverages 1-D Convolutional Neural Networks (CNN) for online signature verification. Furthermore, our experiments demonstrate the effectiveness of our framework regarding 1-D CNN and federated learning. Particularly, the experiment results highlight that our framework 1) minimizes local computational resources; 2) enhances transfer effects with substantial initialization data; 3) presents remarkable scalability. The centralized 1-D CNN model achieves an Equal Error Rate (EER) of 3.33% and an accuracy of 96.25%. Meanwhile, configurations with 2, 5, and 10 agents yield EERs of 5.42%, 5.83%, and 5.63%, along with accuracies of 95.21%, 94.17%, and 94.06%, respectively.
Abstract:Spiking neural networks (SNNs) offer an energy-efficient alternative to conventional deep learning by mimicking the event-driven processing of the brain. Incorporating the Transformers with SNNs has shown promise for accuracy, yet it is incompetent to capture high-frequency patterns like moving edge and pixel-level brightness changes due to their reliance on global self-attention operations. Porting frequency representations in SNN is challenging yet crucial for event-driven vision. To address this issue, we propose the Spiking Wavelet Transformer (SWformer), an attention-free architecture that effectively learns comprehensive spatial-frequency features in a spike-driven manner by leveraging the sparse wavelet transform. The critical component is a Frequency-Aware Token Mixer (FATM) with three branches: 1) spiking wavelet learner for spatial-frequency domain learning, 2) convolution-based learner for spatial feature extraction, and 3) spiking pointwise convolution for cross-channel information aggregation. We also adopt negative spike dynamics to strengthen the frequency representation further. This enables the SWformer to outperform vanilla Spiking Transformers in capturing high-frequency visual components, as evidenced by our empirical results. Experiments on both static and neuromorphic datasets demonstrate SWformer's effectiveness in capturing spatial-frequency patterns in a multiplication-free, event-driven fashion, outperforming state-of-the-art SNNs. SWformer achieves an over 50% reduction in energy consumption, a 21.1% reduction in parameter count, and a 2.40% performance improvement on the ImageNet dataset compared to vanilla Spiking Transformers.
Abstract:Navigating toward specific objects in unknown environments without additional training, known as Zero-Shot object navigation, poses a significant challenge in the field of robotics, which demands high levels of auxiliary information and strategic planning. Traditional works have focused on holistic solutions, overlooking the specific challenges agents encounter during navigation such as collision, low exploration efficiency, and misidentification of targets. To address these challenges, our work proposes TriHelper, a novel framework designed to assist agents dynamically through three primary navigation challenges: collision, exploration, and detection. Specifically, our framework consists of three innovative components: (i) Collision Helper, (ii) Exploration Helper, and (iii) Detection Helper. These components work collaboratively to solve these challenges throughout the navigation process. Experiments on the Habitat-Matterport 3D (HM3D) and Gibson datasets demonstrate that TriHelper significantly outperforms all existing baseline methods in Zero-Shot object navigation, showcasing superior success rates and exploration efficiency. Our ablation studies further underscore the effectiveness of each helper in addressing their respective challenges, notably enhancing the agent's navigation capabilities. By proposing TriHelper, we offer a fresh perspective on advancing the object navigation task, paving the way for future research in the domain of Embodied AI and visual-based navigation.
Abstract:Polymicrogyria (PMG) is a disorder of cortical organization mainly seen in children, which can be associated with seizures, developmental delay and motor weakness. PMG is typically diagnosed on magnetic resonance imaging (MRI) but some cases can be challenging to detect even for experienced radiologists. In this study, we create an open pediatric MRI dataset (PPMR) with PMG and controls from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The differences between PMG MRIs and control MRIs are subtle and the true distribution of the features of the disease is unknown. This makes automatic detection of cases of potential PMG in MRI difficult. We propose an anomaly detection method based on a novel center-based deep contrastive metric learning loss function (cDCM) which enables the automatic detection of cases of potential PMG. Additionally, based on our proposed loss function, we customize a deep learning model structure that integrates dilated convolution, squeeze-and-excitation blocks and feature fusion for our PPMR dataset. Despite working with a small and imbalanced dataset our method achieves 92.01% recall at 55.04% precision. This will facilitate a computer aided tool for radiologists to select potential PMG MRIs. To the best of our knowledge, this research is the first to apply machine learning techniques to identify PMG from MRI only.
Abstract:This paper focuses on improving face recognition performance by a patch-based 1-to-N signature matcher that learns correlations between different facial patches. A Fully Associative Patch-based Signature Matcher (FAPSM) is proposed so that the local matching identity of each patch contributes to the global matching identities of all the patches. The proposed matcher consists of three steps. First, based on the signature, the local matching identity and the corresponding matching score of each patch are computed. Then, a fully associative weight matrix is learned to obtain the global matching identities and scores of all the patches. At last, the l1-regularized weighting is applied to combine the global matching identity of each patch and obtain a final matching identity. The proposed matcher has been integrated with the UR2D system for evaluation. The experimental results indicate that the proposed matcher achieves better performance than the current UR2D system. The Rank-1 accuracy is improved significantly by 3% and 0.55% on the UHDB31 dataset and the IJB-A dataset, respectively.
Abstract:This paper focuses on improving the performance of current convolutional neural networks in visual recognition without changing the network architecture. A hierarchical matcher is proposed that builds chains of local binary neural networks after one global neural network over all the class labels, named as Local Classifier Chains based Convolutional Neural Network (LCC-CNN). The signature of each sample as two components: global component based on the global network; local component based on local binary networks. The local networks are built based on label pairs created by a similarity matrix and confusion matrix. During matching, each sample travels through one global network and a chain of local networks to obtain its final matching to avoid error propagation. The proposed matcher has been evaluated with image recognition, character recognition and face recognition datasets. The experimental results indicate that the proposed matcher achieves better performance when compared with methods using only a global deep network. Compared with the UR2D system, the accuracy is improved significantly by 1% and 0.17% on the UHDB31 dataset and the IJB-A dataset, respectively.
Abstract:This paper proposes a hierarchical multi-label matcher for patch-based face recognition. In signature generation, a face image is iteratively divided into multi-level patches. Two different types of patch divisions and signatures are introduced for 2D facial image and texture-lifted image, respectively. The matcher training consists of three steps. First, local classifiers are built to learn the local matching of each patch. Second, the hierarchical relationships defined between local patches are used to learn the global matching of each patch. Three ways are introduced to learn the global matching: majority voting, l1-regularized weighting, and decision rule. Last, the global matchings of different levels are combined as the final matching. Experimental results on different face recognition tasks demonstrate the effectiveness of the proposed matcher at the cost of gallery generalization. Compared with the UR2D system, the proposed matcher improves the Rank-1 accuracy significantly by 3% and 0.18% on the UHDB31 dataset and IJB-A dataset, respectively.