Abstract:Contemporary hardware design benefits from the abstraction provided by high-level logic gates, streamlining the implementation of logic circuits. Logic Synthesis Optimization (LSO) operates at one level of abstraction within the Electronic Design Automation (EDA) workflow, targeting improvements in logic circuits with respect to performance metrics such as size and speed in the final layout. Recent trends in the field show a growing interest in leveraging Machine Learning (ML) for EDA, notably through ML-guided logic synthesis utilizing policy-based Reinforcement Learning (RL) methods.Despite these advancements, existing models face challenges such as overfitting and limited generalization, attributed to constrained public circuits and the expressiveness limitations of graph encoders. To address these hurdles, and tackle data scarcity issues, we introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR). LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics. Experimental studies validate the effectiveness of LSOformer, showcasing its superior performance over baseline architectures in QoR prediction tasks, where it achieves improvements of 5.74%, 4.35%, and 17.06% on the EPFL, OABCD, and proprietary circuits datasets, respectively, in inductive setup.
Abstract:Electronic Design Automation (EDA) is essential for IC design and has recently benefited from AI-based techniques to improve efficiency. Logic synthesis, a key EDA stage, transforms high-level hardware descriptions into optimized netlists. Recent research has employed machine learning to predict Quality of Results (QoR) for pairs of And-Inverter Graphs (AIGs) and synthesis recipes. However, the severe scarcity of data due to a very limited number of available AIGs results in overfitting, significantly hindering performance. Additionally, the complexity and large number of nodes in AIGs make plain GNNs less effective for learning expressive graph-level representations. To tackle these challenges, we propose MTLSO - a Multi-Task Learning approach for Logic Synthesis Optimization. On one hand, it maximizes the use of limited data by training the model across different tasks. This includes introducing an auxiliary task of binary multi-label graph classification alongside the primary regression task, allowing the model to benefit from diverse supervision sources. On the other hand, we employ a hierarchical graph representation learning strategy to improve the model's capacity for learning expressive graph-level representations of large AIGs, surpassing traditional plain GNNs. Extensive experiments across multiple datasets and against state-of-the-art baselines demonstrate the superiority of our method, achieving an average performance gain of 8.22\% for delay and 5.95\% for area.
Abstract:In regularization Self-Supervised Learning (SSL) methods for graphs, computational complexity increases with the number of nodes in graphs and embedding dimensions. To mitigate the scalability of non-contrastive graph SSL, we propose a novel approach to reduce the cost of computing the covariance matrix for the pre-training loss function with volume-maximization terms. Our work focuses on reducing the cost associated with the loss computation via graph node or dimension sampling. We provide theoretical insight into why dimension sampling would result in accurate loss computations and support it with mathematical derivation of the novel approach. We develop our experimental setup on the node-level graph prediction tasks, where SSL pre-training has shown to be difficult due to the large size of real world graphs. Our experiments demonstrate that the cost associated with the loss computation can be reduced via node or dimension sampling without lowering the downstream performance. Our results demonstrate that sampling mostly results in improved downstream performance. Ablation studies and experimental analysis are provided to untangle the role of the different factors in the experimental setup.
Abstract:Temporal Graph Neural Networks have garnered substantial attention for their capacity to model evolving structural and temporal patterns while exhibiting impressive performance. However, it is known that these architectures are encumbered by issues that constrain their performance, such as over-squashing and over-smoothing. Meanwhile, Transformers have demonstrated exceptional computational capacity to effectively address challenges related to long-range dependencies. Consequently, we introduce Todyformer-a novel Transformer-based neural network tailored for dynamic graphs. It unifies the local encoding capacity of Message-Passing Neural Networks (MPNNs) with the global encoding of Transformers through i) a novel patchifying paradigm for dynamic graphs to improve over-squashing, ii) a structure-aware parametric tokenization strategy leveraging MPNNs, iii) a Transformer with temporal positional-encoding to capture long-range dependencies, and iv) an encoding architecture that alternates between local and global contextualization, mitigating over-smoothing in MPNNs. Experimental evaluations on public benchmark datasets demonstrate that Todyformer consistently outperforms the state-of-the-art methods for downstream tasks. Furthermore, we illustrate the underlying aspects of the proposed model in effectively capturing extensive temporal dependencies in dynamic graphs.
Abstract:Recent advancements in Electroencephalography (EEG) sensor technologies and signal processing algorithms have paved the way for further evolution of Brain Computer Interfaces (BCI). When it comes to Signal Processing (SP) for BCI, there has been a surge of interest on Steady-State motion-Visual Evoked Potentials (SSmVEP), where motion stimulation is utilized to address key issues associated with conventional light-flashing/flickering. Such benefits, however, come with the price of having less accuracy and less Information Transfer Rate (ITR). In this regard, the paper focuses on the design of a novel SSmVEP paradigm without using resources such as trial time, phase, and/or number of targets to enhance the ITR. The proposed design is based on the intuitively pleasing idea of integrating more than one motion within a single SSmVEP target stimuli, simultaneously. To elicit SSmVEP, we designed a novel and innovative dual frequency aggregated modulation paradigm, referred to as the Dual Frequency Aggregated steady-state motion Visual Evoked Potential (DF-SSmVEP), by concurrently integrating "Radial Zoom" and "Rotation" motions in a single target without increasing the trial length. Compared to conventional SSmVEPs, the proposed DF-SSmVEP framework consists of two motion modes integrated and shown simultaneously each modulated by a specific target frequency. The paper also develops a specific unsupervised classification model, referred to as the Bifold Canonical Correlation Analysis (BCCA), based on two motion frequencies per target. The proposed DF-SSmVEP is evaluated based on a real EEG dataset and the results corroborate its superiority. The proposed DF-SSmVEP outperforms its counterparts and achieved an average ITR of 30.7 +/- 1.97 and an average accuracy of 92.5 +/- 2.04.