Abstract:Autoregressive models excel in modeling sequential dependencies by enforcing causal constraints, yet they struggle to capture complex bidirectional patterns due to their unidirectional nature. In contrast, mask-based models leverage bidirectional context, enabling richer dependency modeling. However, they often assume token independence during prediction, which undermines the modeling of sequential dependencies. Additionally, the corruption of sequences through masking or absorption can introduce unnatural distortions, complicating the learning process. To address these issues, we propose Bidirectional Autoregressive Diffusion (BAD), a novel approach that unifies the strengths of autoregressive and mask-based generative models. BAD utilizes a permutation-based corruption technique that preserves the natural sequence structure while enforcing causal dependencies through randomized ordering, enabling the effective capture of both sequential and bidirectional relationships. Comprehensive experiments show that BAD outperforms autoregressive and mask-based models in text-to-motion generation, suggesting a novel pre-training strategy for sequence modeling. The codebase for BAD is available on https://github.com/RohollahHS/BAD.
Abstract:Early diagnosis and treatment of polyps during colonoscopy are essential for reducing the incidence and mortality of Colorectal Cancer (CRC). However, the variability in polyp characteristics and the presence of artifacts in colonoscopy images and videos pose significant challenges for accurate and efficient polyp detection and segmentation. This paper presents a novel approach to polyp segmentation by integrating the Segment Anything Model (SAM 2) with the YOLOv8 model. Our method leverages YOLOv8's bounding box predictions to autonomously generate input prompts for SAM 2, thereby reducing the need for manual annotations. We conducted exhaustive tests on five benchmark colonoscopy image datasets and two colonoscopy video datasets, demonstrating that our method exceeds state-of-the-art models in both image and video segmentation tasks. Notably, our approach achieves high segmentation accuracy using only bounding box annotations, significantly reducing annotation time and effort. This advancement holds promise for enhancing the efficiency and scalability of polyp detection in clinical settings https://github.com/sajjad-sh33/YOLO_SAM2.
Abstract:Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution, even when source data is inaccessible. While traditional TTA methods often rely on entropy as a confidence metric, its effectiveness can be limited, particularly in biased scenarios. Extending existing approaches like the Pseudo Label Probability Difference (PLPD), we introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD, to enhance sample selection and adaptation. Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation, thus avoiding the overfitting to noise often observed in previous methods. Extensive experiments on CIFAR-10-C and CIFAR-100-C datasets demonstrate that our approach outperforms existing TTA techniques, particularly in challenging and biased scenarios, leading to more robust and consistent model performance across diverse test scenarios. The codebase for ETAGE is available on https://github.com/afsharshamsi/ETAGE.
Abstract:Recently pre-trained Foundation Models (FMs) have been combined with Federated Learning (FL) to improve training of downstream tasks while preserving privacy. However, deploying FMs over edge networks with resource-constrained Internet of Things (IoT) devices is under-explored. This paper proposes a novel framework, namely, Federated Distilling knowledge to Prompt (FedD2P), for leveraging the robust representation abilities of a vision-language FM without deploying it locally on edge devices. This framework distills the aggregated knowledge of IoT devices to a prompt generator to efficiently adapt the frozen FM for downstream tasks. To eliminate the dependency on a public dataset, our framework leverages perclass local knowledge from IoT devices and linguistic descriptions of classes to train the prompt generator. Our experiments on diverse image classification datasets CIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the baselines in terms of model performance.
Abstract:Polyp segmentation plays a crucial role in the early detection and diagnosis of colorectal cancer. However, obtaining accurate segmentations often requires labor-intensive annotations and specialized models. Recently, Meta AI Research released a general Segment Anything Model 2 (SAM 2), which has demonstrated promising performance in several segmentation tasks. In this work, we evaluate the performance of SAM 2 in segmenting polyps under various prompted settings. We hope this report will provide insights to advance the field of polyp segmentation and promote more interesting work in the future. This project is publicly available at https://github.com/ sajjad-sh33/Polyp-SAM-2.
Abstract:Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
Abstract:Recent statistics indicate that approximately 1.3 billion individuals worldwide suffer from hypertension, a leading cause of premature death globally. Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension. Driven by recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs), there has been a surge of interest in developing data-driven and cuff-less BP estimation solutions. In this context, current literature predominantly focuses on coupling Electrocardiography (ECG) and Photoplethysmography (PPG) sensors, though this approach is constrained by reliance on multiple sensor types. An alternative, utilizing standalone PPG signals, presents challenges due to the absence of auxiliary sensors (ECG), requiring the use of morphological features while addressing motion artifacts and high-frequency noise. To address these issues, the paper introduces the TransfoRhythm framework, a Transformer-based DNN architecture built upon the recently released physiological database, MIMIC-IV. Leveraging Multi-Head Attention (MHA) mechanism, TransfoRhythm identifies dependencies and similarities across data segments, forming a robust framework for cuff-less BP estimation solely using PPG signals. To our knowledge, this paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation, and TransfoRhythm is the first MHA-based model trained via MIMIC IV for BP prediction. Performance evaluation through comprehensive experiments demonstrates TransfoRhythm's superiority over its state-of-the-art counterparts. Specifically, TransfoRhythm achieves highly accurate results with Root Mean Square Error (RMSE) of [1.84, 1.42] and Mean Absolute Error (MAE) of [1.50, 1.17] for systolic and diastolic blood pressures, respectively.
Abstract:Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.
Abstract:Familial Hypercholesterolemia (FH) is a genetic disorder characterized by elevated levels of Low-Density Lipoprotein (LDL) cholesterol or its associated genes. Early-stage and accurate categorization of FH is of significance allowing for timely interventions to mitigate the risk of life-threatening conditions. Conventional diagnosis approach, however, is complex, costly, and a challenging interpretation task even for experienced clinicians resulting in high underdiagnosis rates. Although there has been a recent surge of interest in using Machine Learning (ML) models for early FH detection, existing solutions only consider a binary classification task solely using classical ML models. Despite its significance, application of Deep Learning (DL) for FH detection is in its infancy, possibly, due to categorical nature of the underlying clinical data. The paper addresses this gap by introducing the FH-TabNet, which is a multi-stage tabular DL network for multi-class (Definite, Probable, Possible, and Unlikely) FH detection. The FH-TabNet initially involves applying a deep tabular data learning architecture (TabNet) for primary categorization into healthy (Possible/Unlikely) and patient (Probable/Definite) classes. Subsequently, independent TabNet classifiers are applied to each subgroup, enabling refined classification. The model's performance is evaluated through 5-fold cross-validation illustrating superior performance in categorizing FH patients, particularly in the challenging low-prevalence subcategories.
Abstract:Digital pathology involves converting physical tissue slides into high-resolution Whole Slide Images (WSIs), which pathologists analyze for disease-affected tissues. However, large histology slides with numerous microscopic fields pose challenges for visual search. To aid pathologists, Computer Aided Diagnosis (CAD) systems offer visual assistance in efficiently examining WSIs and identifying diagnostically relevant regions. This paper presents a novel histopathological image analysis method employing Weakly Supervised Semantic Segmentation (WSSS) based on Capsule Networks, the first such application. The proposed model is evaluated using the Atlas of Digital Pathology (ADP) dataset and its performance is compared with other histopathological semantic segmentation methodologies. The findings underscore the potential of Capsule Networks in enhancing the precision and efficiency of histopathological image analysis. Experimental results show that the proposed model outperforms traditional methods in terms of accuracy and the mean Intersection-over-Union (mIoU) metric.