Abstract:Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution, even when source data is inaccessible. While traditional TTA methods often rely on entropy as a confidence metric, its effectiveness can be limited, particularly in biased scenarios. Extending existing approaches like the Pseudo Label Probability Difference (PLPD), we introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD, to enhance sample selection and adaptation. Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation, thus avoiding the overfitting to noise often observed in previous methods. Extensive experiments on CIFAR-10-C and CIFAR-100-C datasets demonstrate that our approach outperforms existing TTA techniques, particularly in challenging and biased scenarios, leading to more robust and consistent model performance across diverse test scenarios. The codebase for ETAGE is available on https://github.com/afsharshamsi/ETAGE.
Abstract:In recent years, Reinforcement Learning (RL) has emerged as a powerful tool for solving a wide range of problems, including decision-making and genomics. The exponential growth of raw genomic data over the past two decades has exceeded the capacity of manual analysis, leading to a growing interest in automatic data analysis and processing. RL algorithms are capable of learning from experience with minimal human supervision, making them well-suited for genomic data analysis and interpretation. One of the key benefits of using RL is the reduced cost associated with collecting labeled training data, which is required for supervised learning. While there have been numerous studies examining the applications of Machine Learning (ML) in genomics, this survey focuses exclusively on the use of RL in various genomics research fields, including gene regulatory networks (GRNs), genome assembly, and sequence alignment. We present a comprehensive technical overview of existing studies on the application of RL in genomics, highlighting the strengths and limitations of these approaches. We then discuss potential research directions that are worthy of future exploration, including the development of more sophisticated reward functions as RL heavily depends on the accuracy of the reward function, the integration of RL with other machine learning techniques, and the application of RL to new and emerging areas in genomics research. Finally, we present our findings and conclude by summarizing the current state of the field and the future outlook for RL in genomics.