Abstract:Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.
Abstract:Reinforcement learning methods have proposed promising traffic signal control policy that can be trained on large road networks. Current SOTA methods model road networks as topological graph structures, incorporate graph attention into deep Q-learning, and merge local and global embeddings to improve policy. However, graph-based methods are difficult to parallelize, resulting in huge time overhead. Moreover, none of the current peer studies have deployed dynamic traffic systems for experiments, which is far from the actual situation. In this context, we propose Multi-Scene Aggregation Convolutional Learning for traffic signal control (MacLight), which offers faster training speeds and more stable performance. Our approach consists of two main components. The first is the global representation, where we utilize variational autoencoders to compactly compress and extract the global representation. The second component employs the proximal policy optimization algorithm as the backbone, allowing value evaluation to consider both local features and global embedding representations. This backbone model significantly reduces time overhead and ensures stability in policy updates. We validated our method across multiple traffic scenarios under both static and dynamic traffic systems. Experimental results demonstrate that, compared to general and domian SOTA methods, our approach achieves superior stability, optimized convergence levels and the highest time efficiency. The code is under https://github.com/Aegis1863/MacLight.