Abstract:Recent statistics indicate that approximately 1.3 billion individuals worldwide suffer from hypertension, a leading cause of premature death globally. Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension. Driven by recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs), there has been a surge of interest in developing data-driven and cuff-less BP estimation solutions. In this context, current literature predominantly focuses on coupling Electrocardiography (ECG) and Photoplethysmography (PPG) sensors, though this approach is constrained by reliance on multiple sensor types. An alternative, utilizing standalone PPG signals, presents challenges due to the absence of auxiliary sensors (ECG), requiring the use of morphological features while addressing motion artifacts and high-frequency noise. To address these issues, the paper introduces the TransfoRhythm framework, a Transformer-based DNN architecture built upon the recently released physiological database, MIMIC-IV. Leveraging Multi-Head Attention (MHA) mechanism, TransfoRhythm identifies dependencies and similarities across data segments, forming a robust framework for cuff-less BP estimation solely using PPG signals. To our knowledge, this paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation, and TransfoRhythm is the first MHA-based model trained via MIMIC IV for BP prediction. Performance evaluation through comprehensive experiments demonstrates TransfoRhythm's superiority over its state-of-the-art counterparts. Specifically, TransfoRhythm achieves highly accurate results with Root Mean Square Error (RMSE) of [1.84, 1.42] and Mean Absolute Error (MAE) of [1.50, 1.17] for systolic and diastolic blood pressures, respectively.
Abstract:As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.
Abstract:As Internet of Things devices become prevalent, using intrusion detection to protect IoT from malicious intrusions is of vital importance. However, the data scarcity of IoT hinders the effectiveness of traditional intrusion detection methods. To tackle this issue, in this paper, we propose the Adaptive Bi-Recommendation and Self-Improving Network (ABRSI) based on unsupervised heterogeneous domain adaptation (HDA). The ABRSI transfers enrich intrusion knowledge from a data-rich network intrusion source domain to facilitate effective intrusion detection for data-scarce IoT target domains. The ABRSI achieves fine-grained intrusion knowledge transfer via adaptive bi-recommendation matching. Matching the bi-recommendation interests of two recommender systems and the alignment of intrusion categories in the shared feature space form a mutual-benefit loop. Besides, the ABRSI uses a self-improving mechanism, autonomously improving the intrusion knowledge transfer from four ways. A hard pseudo label voting mechanism jointly considers recommender system decision and label relationship information to promote more accurate hard pseudo label assignment. To promote diversity and target data participation during intrusion knowledge transfer, target instances failing to be assigned with a hard pseudo label will be assigned with a probabilistic soft pseudo label, forming a hybrid pseudo-labelling strategy. Meanwhile, the ABRSI also makes soft pseudo-labels globally diverse and individually certain. Finally, an error knowledge learning mechanism is utilised to adversarially exploit factors that causes detection ambiguity and learns through both current and previous error knowledge, preventing error knowledge forgetfulness. Holistically, these mechanisms form the ABRSI model that boosts IoT intrusion detection accuracy via HDA-assisted intrusion knowledge transfer.