Abstract:Multi-domain recommendation (MDR) aims to enhance recommendation performance across various domains. However, real-world recommender systems in online platforms often need to handle dozens or even hundreds of domains, far exceeding the capabilities of traditional MDR algorithms, which typically focus on fewer than five domains. Key challenges include a substantial increase in parameter count, high maintenance costs, and intricate knowledge transfer patterns across domains. Furthermore, minor domains often suffer from data sparsity, leading to inadequate training in classical methods. To address these issues, we propose Adaptive REcommendation for All Domains with counterfactual augmentation (AREAD). AREAD employs a hierarchical structure with a limited number of expert networks at several layers, to effectively capture domain knowledge at different granularities. To adaptively capture the knowledge transfer pattern across domains, we generate and iteratively prune a hierarchical expert network selection mask for each domain during training. Additionally, counterfactual assumptions are used to augment data in minor domains, supporting their iterative mask pruning. Our experiments on two public datasets, each encompassing over twenty domains, demonstrate AREAD's effectiveness, especially in data-sparse domains. Source code is available at https://github.com/Chrissie-Law/AREAD-Multi-Domain-Recommendation.
Abstract:As trustworthy AI continues to advance, the fairness issue in recommendations has received increasing attention. A recommender system is considered unfair when it produces unequal outcomes for different user groups based on user-sensitive attributes (e.g., age, gender). Some researchers have proposed data augmentation-based methods aiming at alleviating user-level unfairness by altering the skewed distribution of training data among various user groups. Despite yielding promising results, they often rely on fairness-related assumptions that may not align with reality, potentially reducing the data quality and negatively affecting model effectiveness. To tackle this issue, in this paper, we study how to implement high-quality data augmentation to improve recommendation fairness. Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework aiming at improving fairness in recommender system. First, FairDgcl develops an adversarial contrastive network with a view generator and a view discriminator to learn generating fair augmentation strategies in an adversarial style. Then, we propose two dynamic, learnable models to generate contrastive views within contrastive learning framework, which automatically fine-tune the augmentation strategies. Meanwhile, we theoretically show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy. Lastly, comprehensive experiments conducted on four real-world datasets demonstrate the effectiveness of the proposed FairDgcl.
Abstract:Multimodal large language models (MLLMs) have shown promising advancements in general visual and language understanding. However, the representation of multimodal information using MLLMs remains largely unexplored. In this work, we introduce a new framework, E5-V, designed to adapt MLLMs for achieving universal multimodal embeddings. Our findings highlight the significant potential of MLLMs in representing multimodal inputs compared to previous approaches. By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs. This method demonstrates significant improvements over traditional multimodal training on image-text pairs, while reducing training costs by approximately 95%. Additionally, this approach eliminates the need for costly multimodal training data collection. Extensive experiments across four types of tasks demonstrate the effectiveness of E5-V. As a universal multimodal model, E5-V not only achieves but often surpasses state-of-the-art performance in each task, despite being trained on a single modality.
Abstract:Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models. In this paper, we analyze the impact of low-rank updating, as implemented in LoRA. Our findings suggest that the low-rank updating mechanism may limit the ability of LLMs to effectively learn and memorize new knowledge. Inspired by this observation, we propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters. To achieve it, we introduce the corresponding non-parameter operators to reduce the input dimension and increase the output dimension for the square matrix. Furthermore, these operators ensure that the weight can be merged back into LLMs, which makes our method can be deployed like LoRA. We perform a comprehensive evaluation of our method across five tasks: instruction tuning, mathematical reasoning, continual pretraining, memory and pretraining. Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
Abstract:Affine Frequency Division Multiplexing (AFDM) is a brand new chirp-based multi-carrier (MC) waveform for high mobility communications, with promising advantages over Orthogonal Frequency Division Multiplexing (OFDM) and other MC waveforms. Existing AFDM research focuses on wireless communication at high carrier frequency (CF), which typically considers only Doppler frequency shift (DFS) as a result of mobility, while ignoring the accompanied Doppler time scaling (DTS) on waveform. However, for underwater acoustic (UWA) communication at much lower CF and propagating at speed of sound, the DTS effect could not be ignored and poses significant challenges for channel estimation. This paper analyzes the channel frequency response (CFR) of AFDM under multi-scale multi-lag (MSML) channels, where each propagating path could have different delay and DFS/DTS. Based on the newly derived input-output formula and its characteristics, two new channel estimation methods are proposed, i.e., AFDM with iterative multi-index (AFDM-IMI) estimation under low to moderate DTS, and AFDM with orthogonal matching pursuit (AFDM-OMP) estimation under high DTS. Numerical results confirm the effectiveness of the proposed methods against the original AFDM channel estimation method. Moreover, the resulted AFDM system outperforms OFDM as well as Orthogonal Chirp Division Multiplexing (OCDM) in terms of channel estimation accuracy and bit error rate (BER), which is consistent with our theoretical analysis based on CFR overlap probability (COP), mutual incoherent property (MIP) and channel diversity gain under MSML channels.
Abstract:To enhance the domain-specific capabilities of large language models, continued pre-training on a domain-specific corpus is a prevalent method. Recent work demonstrates that adapting models using reading comprehension data formatted by regex-based patterns can significantly improve performance on domain-specific tasks. However, regex-based patterns are incapable of parsing raw corpora using domain-specific knowledge. Furthermore, the question and answer pairs are extracted directly from the corpus in predefined formats offers limited context. To address this limitation, we improve reading comprehension via LLM and clustering. LLM focuses on leveraging domain knowledge within the corpus to refine comprehension stage, while clustering supplies relevant knowledge by extending the context to enrich reading stage. Additionally, our method incorporates parameter-efficient fine-tuning to improve the efficiency of domain adaptation. In comparison to AdaptLLM, our method achieves an improvement exceeding 5% in domain-specific tasks. Our code will available at https://github.com/microsoft/LMOps.
Abstract:Linear chirp-based underwater acoustic communication has been widely used due to its reliability and long-range transmission capability. However, unlike the counterpart chirp technology in wireless -- LoRa, its throughput is severely limited by the number of modulated chirps in a symbol. The fundamental challenge lies in the underwater multi-path channel, where the delayed copied of one symbol may cause inter-symbol and intra-symbol interfere. In this paper, we present UWLoRa+, a system that realizes the same chirp modulation as LoRa with higher data rate, and enhances LoRa's design to address the multi-path challenge via the following designs: a) we replace the linear chirp used by LoRa with the non-linear chirp to reduce the signal interference range and the collision probability; b) we design an algorithm that first demodulates each path and then combines the demodulation results of detected paths; and c) we replace the Hamming codes used by LoRa with the non-binary LDPC codes to mitigate the impact of the inevitable collision.Experiment results show that the new designs improve the bit error rate (BER) by 3x, and the packet error rate (PER) significantly, compared with the LoRa's naive design. Compared with an state-of-the-art system for decoding underwater LoRa chirp signal, UWLoRa+ improves the throughput by up to 50 times.
Abstract:Since Knowledge Graphs (KGs) contain rich semantic information, recently there has been an influx of KG-enhanced recommendation methods. Most of existing methods are entirely designed based on euclidean space without considering curvature. However, recent studies have revealed that a tremendous graph-structured data exhibits highly non-euclidean properties. Motivated by these observations, in this work, we propose a knowledge-based multiple adaptive spaces fusion method for recommendation, namely MCKG. Unlike existing methods that solely adopt a specific manifold, we introduce the unified space that is compatible with hyperbolic, euclidean and spherical spaces. Furthermore, we fuse the multiple unified spaces in an attention manner to obtain the high-quality embeddings for better knowledge propagation. In addition, we propose a geometry-aware optimization strategy which enables the pull and push processes benefited from both hyperbolic and spherical spaces. Specifically, in hyperbolic space, we set smaller margins in the area near to the origin, which is conducive to distinguishing between highly similar positive items and negative ones. At the same time, we set larger margins in the area far from the origin to ensure the model has sufficient error tolerance. The similar manner also applies to spherical spaces. Extensive experiments on three real-world datasets demonstrate that the MCKG has a significant improvement over state-of-the-art recommendation methods. Further ablation experiments verify the importance of multi-space fusion and geometry-aware optimization strategy, justifying the rationality and effectiveness of MCKG.
Abstract:Patent classification aims to assign multiple International Patent Classification (IPC) codes to a given patent. Recent methods for automatically classifying patents mainly focus on analyzing the text descriptions of patents. However, apart from the texts, each patent is also associated with some assignees, and the knowledge of their applied patents is often valuable for classification. Furthermore, the hierarchical taxonomy formulated by the IPC system provides important contextual information and enables models to leverage the correlations between IPC codes for more accurate classification. However, existing methods fail to incorporate the above aspects. In this paper, we propose an integrated framework that comprehensively considers the information on patents for patent classification. To be specific, we first present an IPC codes correlations learning module to derive their semantic representations via adaptively passing and aggregating messages within the same level and across different levels along the hierarchical taxonomy. Moreover, we design a historical application patterns learning component to incorporate the corresponding assignee's previous patents by a dual channel aggregation mechanism. Finally, we combine the contextual information of patent texts that contains the semantics of IPC codes, and assignees' sequential preferences to make predictions. Experiments on real-world datasets demonstrate the superiority of our approach over the existing methods. Besides, we present the model's ability to capture the temporal patterns of assignees and the semantic dependencies among IPC codes.
Abstract:Accurate prediction of what types of patents that companies will apply for in the next period of time can figure out their development strategies and help them discover potential partners or competitors in advance. Although important, this problem has been rarely studied in previous research due to the challenges in modelling companies' continuously evolving preferences and capturing the semantic correlations of classification codes. To fill in this gap, we propose an event-based dynamic graph learning framework for patent application trend prediction. In particular, our method is founded on the memorable representations of both companies and patent classification codes. When a new patent is observed, the representations of the related companies and classification codes are updated according to the historical memories and the currently encoded messages. Moreover, a hierarchical message passing mechanism is provided to capture the semantic proximities of patent classification codes by updating their representations along the hierarchical taxonomy. Finally, the patent application trend is predicted by aggregating the representations of the target company and classification codes from static, dynamic, and hierarchical perspectives. Experiments on real-world data demonstrate the effectiveness of our approach under various experimental conditions, and also reveal the abilities of our method in learning semantics of classification codes and tracking technology developing trajectories of companies.