Abstract:Tokenization techniques such as Byte-Pair Encoding (BPE) and Byte-Level BPE (BBPE) have significantly improved the computational efficiency and vocabulary representation stability of large language models (LLMs) by segmenting text into tokens. However, this segmentation often obscures the internal character structures and sequences within tokens, preventing models from fully learning these intricate details during training. Consequently, LLMs struggle to comprehend the character compositions and positional relationships within tokens, especially when fine-tuned on downstream tasks with limited data. In this paper, we introduce Token Internal Position Awareness (TIPA), a novel approach that enhances LLMs' understanding of internal token structures by training them on reverse character prediction tasks using the tokenizer's own vocabulary. This method enables models to effectively learn and generalize character positions and internal structures. Experimental results demonstrate that LLMs trained with TIPA outperform baseline models in predicting character positions at the token level. Furthermore, when applied to the downstream task of Chinese Spelling Correction (CSC), TIPA not only accelerates model convergence but also significantly improves task performance.
Abstract:This work investigates stepsize-based acceleration of gradient descent with {\em anytime} convergence guarantees. For smooth (non-strongly) convex optimization, we propose a stepsize schedule that allows gradient descent to achieve convergence guarantees of $O(T^{-1.03})$ for any stopping time $T$, where the stepsize schedule is predetermined without prior knowledge of the stopping time. This result provides an affirmative answer to a COLT open problem \citep{kornowski2024open} regarding whether stepsize-based acceleration can yield anytime convergence rates of $o(T^{-1})$. We further extend our theory to yield anytime convergence guarantees of $\exp(-\Omega(T/\kappa^{0.97}))$ for smooth and strongly convex optimization, with $\kappa$ being the condition number.
Abstract:The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs' generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
Abstract:This paper proposes to learn generative priors from the motion patterns instead of video contents for generative video compression. The priors are derived from small motion dynamics in common scenes such as swinging trees in the wind and floating boat on the sea. Utilizing such compact motion priors, a novel generative scene dynamics compression framework is built to realize ultra-low bit-rate communication and high-quality reconstruction for diverse scene contents. At the encoder side, motion priors are characterized into compact representations in a dense-to-sparse manner. At the decoder side, the decoded motion priors serve as the trajectory hints for scene dynamics reconstruction via a diffusion-based flow-driven generator. The experimental results illustrate that the proposed method can achieve superior rate-distortion performance and outperform the state-of-the-art conventional video codec Versatile Video Coding (VVC) on scene dynamics sequences. The project page can be found at https://github.com/xyzysz/GNVDC.
Abstract:Liver cancer is a leading cause of mortality worldwide, and accurate CT-based tumor segmentation is essential for diagnosis and treatment. Manual delineation is time-intensive, prone to variability, and highlights the need for reliable automation. While deep learning has shown promise for automated liver segmentation, precise liver tumor segmentation remains challenging due to the heterogeneous nature of tumors, imprecise tumor margins, and limited labeled data. We present a novel holistic weakly supervised framework that integrates clinical knowledge to address these challenges with (1) A knowledge-informed label smoothing technique that leverages clinical data to generate smooth labels, which regularizes model training reducing the risk of overfitting and enhancing model performance; (2) A global and local-view segmentation framework, breaking down the task into two simpler sub-tasks, allowing optimized preprocessing and training for each; and (3) Pre- and post-processing pipelines customized to the challenges of each subtask, which enhances tumor visibility and refines tumor boundaries. We evaluated the proposed method on the HCC-TACE-Seg dataset and showed that these three key components complementarily contribute to the improved performance. Lastly, we prototyped a tool for automated liver tumor segmentation and diagnosis summary generation called MedAssistLiver. The app and code are published at https://github.com/lingchm/medassist-liver-cancer.
Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.
Abstract:Advancements in deep learning and voice-activated technologies have driven the development of human-vehicle interaction. Distributed microphone arrays are widely used in in-car scenarios because they can accurately capture the voices of passengers from different speech zones. However, the increase in the number of audio channels, coupled with the limited computational resources and low latency requirements of in-car systems, presents challenges for in-car multi-channel speech separation. To migrate the problems, we propose a lightweight framework that cascades digital signal processing (DSP) and neural networks (NN). We utilize fixed beamforming (BF) to reduce computational costs and independent vector analysis (IVA) to provide spatial prior. We employ dual encoders for dual-branch modeling, with spatial encoder capturing spatial cues and spectral encoder preserving spectral information, facilitating spatial-spectral fusion. Our proposed system supports both streaming and non-streaming modes. Experimental results demonstrate the superiority of the proposed system across various metrics. With only 0.83M parameters and 0.39 real-time factor (RTF) on an Intel Core i7 (2.6GHz) CPU, it effectively separates speech into distinct speech zones. Our demos are available at https://honee-w.github.io/DualSep/.
Abstract:The deep complex convolution recurrent network (DCCRN) achieves excellent speech enhancement performance by utilizing the audio spectrum's complex features. However, it has a large number of model parameters. We propose a smaller model, Distil-DCCRN, which has only 30% of the parameters compared to the DCCRN. To ensure that the performance of Distil-DCCRN matches that of the DCCRN, we employ the knowledge distillation (KD) method to use a larger teacher model to help train a smaller student model. We design a knowledge distillation (KD) method, integrating attention transfer and Kullback-Leibler divergence (AT-KL) to train the student model Distil-DCCRN. Additionally, we use a model with better performance and a more complicated structure, Uformer, as the teacher model. Unlike previous KD approaches that mainly focus on model outputs, our method also leverages the intermediate features from the models' middle layers, facilitating rich knowledge transfer across different structured models despite variations in layer configurations and discrepancies in the channel and time dimensions of intermediate features. Employing our AT-KL approach, Distil-DCCRN outperforms DCCRN as well as several other competitive models in both PESQ and SI-SNR metrics on the DNS test set and achieves comparable results to DCCRN in DNSMOS.
Abstract:Multimodal large language models (MLLMs) have shown promising advancements in general visual and language understanding. However, the representation of multimodal information using MLLMs remains largely unexplored. In this work, we introduce a new framework, E5-V, designed to adapt MLLMs for achieving universal multimodal embeddings. Our findings highlight the significant potential of MLLMs in representing multimodal inputs compared to previous approaches. By leveraging MLLMs with prompts, E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs. This method demonstrates significant improvements over traditional multimodal training on image-text pairs, while reducing training costs by approximately 95%. Additionally, this approach eliminates the need for costly multimodal training data collection. Extensive experiments across four types of tasks demonstrate the effectiveness of E5-V. As a universal multimodal model, E5-V not only achieves but often surpasses state-of-the-art performance in each task, despite being trained on a single modality.
Abstract:Audio packet loss is an inevitable problem in real-time speech communication. A band-split packet loss concealment network (BS-PLCNet) targeting full-band signals was recently proposed. Although it performs superiorly in the ICASSP 2024 PLC Challenge, BS-PLCNet is a large model with high computational complexity of 8.95G FLOPS. This paper presents its updated version, BS-PLCNet 2, to reduce computational complexity and improve performance further. Specifically, to compensate for the missing future information, in the wide-band module, we design a dual-path encoder structure (with non-causal and causal path) and leverage an intra-model knowledge distillation strategy to distill the future information from the non-causal teacher to the casual student. Moreover, we introduce a lightweight post-processing module after packet loss restoration to recover speech distortions and remove residual noise in the audio signal. With only 40% of original parameters in BS-PLCNet, BS-PLCNet 2 brings 0.18 PLCMOS improvement on the ICASSP 2024 PLC challenge blind set, achieving state-of-the-art performance on this dataset.