Abstract:Graph neural networks (GNNs) have recently emerged as an effective approach to model neighborhood signals in collaborative filtering. Towards this research line, graph contrastive learning (GCL) demonstrates robust capabilities to address the supervision label shortage issue through generating massive self-supervised signals. Despite its effectiveness, GCL for recommendation suffers seriously from two main challenges: i) GCL relies on graph augmentation to generate semantically different views for contrasting, which could potentially disrupt key information and introduce unwanted noise; ii) current works for GCL primarily focus on contrasting representations using sophisticated networks architecture (usually deep) to capture high-order interactions, which leads to increased computational complexity and suboptimal training efficiency. To this end, we propose L2CL, a principled Layer-to-Layer Contrastive Learning framework that contrasts representations from different layers. By aligning the semantic similarities between different layers, L2CL enables the learning of complex structural relationships and gets rid of the noise perturbation in stochastic data augmentation. Surprisingly, we find that L2CL, using only one-hop contrastive learning paradigm, is able to capture intrinsic semantic structures and improve the quality of node representation, leading to a simple yet effective architecture. We also provide theoretical guarantees for L2CL in minimizing task-irrelevant information. Extensive experiments on five real-world datasets demonstrate the superiority of our model over various state-of-the-art collaborative filtering methods. Our code is available at https://github.com/downeykking/L2CL.
Abstract:CoT (Chain-of-Thought) is a way to solve reasoning problems for LLMs . Recently, many researches appear for improving the CoT capability of LLMs. In this work, we also proposed Olapa-MCoT, which is a LLMs based on llama2-13B PLM for finetuning and alignment learning. During the alignment training, we proposed the SimRRHF algorithm and Incorrect Data Relearning and mainly focused on optimizing the Chinese mathematical reasoning ability of Olapa-MCoT. The experiment achieved significant results, with the accuracy of Chinese mathematical reasoning up to 50%, 36% rise compared to llama2-13B. In addition, the accuracy of English reasoning ability also increased by nearly 4%.
Abstract:In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: \url{https://github.com/oladata-team/OlaGPT}.
Abstract:Domain adaptation, as a task of reducing the annotation cost in a target domain by exploiting the existing labeled data in an auxiliary source domain, has received a lot of attention in the research community. However, the standard domain adaptation has assumed perfectly observed data in both domains, while in real world applications the existence of missing data can be prevalent. In this paper, we tackle a more challenging domain adaptation scenario where one has an incomplete target domain with partially observed data. We propose an Incomplete Data Imputation based Adversarial Network (IDIAN) model to address this new domain adaptation challenge. In the proposed model, we design a data imputation module to fill the missing feature values based on the partial observations in the target domain, while aligning the two domains via deep adversarial adaption. We conduct experiments on both cross-domain benchmark tasks and a real world adaptation task with imperfect target domains. The experimental results demonstrate the effectiveness of the proposed method.