Abstract:Large language models (LLMs), known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains, present a promising avenue for enhancing speech-related tasks. In this paper, we focus on integrating decoder-only LLMs to the task of speech-to-text translation (S2TT). We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation. Additionally, we investigate the effects of different parameter-efficient fine-tuning techniques and task formulation. Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data. We also conduct analyses to validate the design choices of our proposed model and bring insights to the integration of LLMs to S2TT.
Abstract:Video understanding requires the extraction of rich spatio-temporal representations, which transformer models achieve through self-attention. Unfortunately, self-attention poses a computational burden. In NLP, Mamba has surfaced as an efficient alternative for transformers. However, Mamba's successes do not trivially extend to computer vision tasks, including those in video analysis. In this paper, we theoretically analyze the differences between self-attention and Mamba. We identify two limitations in Mamba's token processing: historical decay and element contradiction. We propose VideoMambaPro (VMP) that solves the identified limitations by adding masked backward computation and elemental residual connections to a VideoMamba backbone. VideoMambaPro shows state-of-the-art video action recognition performance compared to transformer models, and surpasses VideoMamba by clear margins: 7.9% and 8.1% top-1 on Kinetics-400 and Something-Something V2, respectively. Our VideoMambaPro-M model achieves 91.9% top-1 on Kinetics-400, only 0.2% below InternVideo2-6B but with only 1.2% of its parameters. The combination of high performance and efficiency makes VideoMambaPro an interesting alternative for transformer models.
Abstract:VQ-VAE, as a mainstream approach of speech tokenizer, has been troubled by ``index collapse'', where only a small number of codewords are activated in large codebooks. This work proposes product-quantized (PQ) VAE with more codebooks but fewer codewords to address this problem and build large-codebook speech tokenizers. It encodes speech features into multiple VQ subspaces and composes them into codewords in a larger codebook. Besides, to utilize each VQ subspace well, we also enhance PQ-VAE via a dual-decoding training strategy with the encoding and quantized sequences. The experimental results demonstrate that PQ-VAE addresses ``index collapse" effectively, especially for larger codebooks. The model with the proposed training strategy further improves codebook perplexity and reconstruction quality, outperforming other multi-codebook VQ approaches. Finally, PQ-VAE demonstrates its effectiveness in language-model-based TTS, supporting higher-quality speech generation with larger codebooks.
Abstract:Prohibited Item detection in X-ray images is one of the most effective security inspection methods.However, differing from natural light images, the unique overlapping phenomena in X-ray images lead to the coupling of foreground and background features, thereby lowering the accuracy of general object detectors.Therefore, we propose a Multi-Class Min-Margin Contrastive Learning (MMCL) method that, by clarifying the category semantic information of content queries under the deformable DETR architecture, aids the model in extracting specific category foreground information from coupled features.Specifically, after grouping content queries by the number of categories, we employ the Multi-Class Inter-Class Exclusion (MIE) loss to push apart content queries from different groups. Concurrently, the Intra-Class Min-Margin Clustering (IMC) loss is utilized to attract content queries within the same group, while ensuring the preservation of necessary disparity. As training, the inherent Hungarian matching of the model progressively strengthens the alignment between each group of queries and the semantic features of their corresponding category of objects. This evolving coherence ensures a deep-seated grasp of category characteristics, consequently bolstering the anti-overlapping detection capabilities of models.MMCL is versatile and can be easily plugged into any deformable DETR-based model with dozens of lines of code. Extensive experiments on the PIXray and OPIXray datasets demonstrate that MMCL significantly enhances the performance of various state-of-the-art models without increasing complexity. The code has been released at https://github.com/anonymity0403/MMCL.
Abstract:Owing to their ability to extract relevant spatio-temporal video embeddings, Vision Transformers (ViTs) are currently the best performing models in video action understanding. However, their generalization over domains or datasets is somewhat limited. In contrast, Visual Language Models (VLMs) have demonstrated exceptional generalization performance, but are currently unable to process videos. Consequently, they cannot extract spatio-temporal patterns that are crucial for action understanding. In this paper, we propose the Four-tiered Prompts (FTP) framework that takes advantage of the complementary strengths of ViTs and VLMs. We retain ViTs' strong spatio-temporal representation ability but improve the visual encodings to be more comprehensive and general by aligning them with VLM outputs. The FTP framework adds four feature processors that focus on specific aspects of human action in videos: action category, action components, action description, and context information. The VLMs are only employed during training, and inference incurs a minimal computation cost. Our approach consistently yields state-of-the-art performance. For instance, we achieve remarkable top-1 accuracy of 93.8% on Kinetics-400 and 83.4% on Something-Something V2, surpassing VideoMAEv2 by 2.8% and 2.6%, respectively.
Abstract:There have been emerging research interest and advances in speech-to-speech translation (S2ST), translating utterances from one language to another. This work proposes Multitask Speech Language Model (MSLM), which is a decoder-only speech language model trained in a multitask setting. Without reliance on text training data, our model is able to support multilingual S2ST with speaker style preserved.
Abstract:Speech language models (LMs) are promising for high-quality speech synthesis through in-context learning. A typical speech LM takes discrete semantic units as content and a short utterance as prompt, and synthesizes speech which preserves the content's semantics but mimics the prompt's style. However, there is no systematic understanding on how the synthesized audio is controlled by the prompt and content. In this work, we conduct an empirical study of the widely used autoregressive (AR) and non-autoregressive (NAR) speech LMs and provide insights into the prompt design and content semantic units. Our analysis reveals that heterogeneous and nonstationary prompts hurt the audio quality in contrast to the previous finding that longer prompts always lead to better synthesis. Moreover, we find that the speaker style of the synthesized audio is also affected by the content in addition to the prompt. We further show that semantic units carry rich acoustic information such as pitch, tempo, volume and speech emphasis, which might be leaked from the content to the synthesized audio.
Abstract:A key challenge in continuous sign language recognition (CSLR) is to efficiently capture long-range spatial interactions over time from the video input. To address this challenge, we propose TCNet, a hybrid network that effectively models spatio-temporal information from Trajectories and Correlated regions. TCNet's trajectory module transforms frames into aligned trajectories composed of continuous visual tokens. In addition, for a query token, self-attention is learned along the trajectory. As such, our network can also focus on fine-grained spatio-temporal patterns, such as finger movements, of a specific region in motion. TCNet's correlation module uses a novel dynamic attention mechanism that filters out irrelevant frame regions. Additionally, it assigns dynamic key-value tokens from correlated regions to each query. Both innovations significantly reduce the computation cost and memory. We perform experiments on four large-scale datasets: PHOENIX14, PHOENIX14-T, CSL, and CSL-Daily, respectively. Our results demonstrate that TCNet consistently achieves state-of-the-art performance. For example, we improve over the previous state-of-the-art by 1.5% and 1.0% word error rate on PHOENIX14 and PHOENIX14-T, respectively.
Abstract:CoT (Chain-of-Thought) is a way to solve reasoning problems for LLMs . Recently, many researches appear for improving the CoT capability of LLMs. In this work, we also proposed Olapa-MCoT, which is a LLMs based on llama2-13B PLM for finetuning and alignment learning. During the alignment training, we proposed the SimRRHF algorithm and Incorrect Data Relearning and mainly focused on optimizing the Chinese mathematical reasoning ability of Olapa-MCoT. The experiment achieved significant results, with the accuracy of Chinese mathematical reasoning up to 50%, 36% rise compared to llama2-13B. In addition, the accuracy of English reasoning ability also increased by nearly 4%.
Abstract:Diffusion models achieve remarkable quality in image generation, but at a cost. Iterative denoising requires many time steps to produce high fidelity images. We argue that the denoising process is crucially limited by an accumulation of the reconstruction error due to an initial inaccurate reconstruction of the target data. This leads to lower quality outputs, and slower convergence. To address this issue, we propose compensation sampling to guide the generation towards the target domain. We introduce a compensation term, implemented as a U-Net, which adds negligible computation overhead during training and, optionally, inference. Our approach is flexible and we demonstrate its application in unconditional generation, face inpainting, and face de-occlusion using benchmark datasets CIFAR-10, CelebA, CelebA-HQ, FFHQ-256, and FSG. Our approach consistently yields state-of-the-art results in terms of image quality, while accelerating the denoising process to converge during training by up to an order of magnitude.