Kuaishou Technology
Abstract:Diffusion policy sampling enables reinforcement learning (RL) to represent multimodal action distributions beyond suboptimal unimodal Gaussian policies. However, existing diffusion-based RL methods primarily focus on offline settings for reward maximization, with limited consideration of safety in online settings. To address this gap, we propose Augmented Lagrangian-Guided Diffusion (ALGD), a novel algorithm for off-policy safe RL. By revisiting optimization theory and energy-based model, we show that the instability of primal-dual methods arises from the non-convex Lagrangian landscape. In diffusion-based safe RL, the Lagrangian can be interpreted as an energy function guiding the denoising dynamics. Counterintuitively, direct usage destabilizes both policy generation and training. ALGD resolves this issue by introducing an augmented Lagrangian that locally convexifies the energy landscape, yielding a stabilized policy generation and training process without altering the distribution of the optimal policy. Theoretical analysis and extensive experiments demonstrate that ALGD is both theoretically grounded and empirically effective, achieving strong and stable performance across diverse environments.
Abstract:Diffusion models have recently emerged as powerful learned priors for Bayesian inverse problems (BIPs). Diffusion-based solvers rely on a presumed likelihood for the observations in BIPs to guide the generation process. However, the link between likelihood and recovery quality for BIPs is unclear in previous works. We bridge this gap by characterizing the posterior approximation error and proving the \emph{stability} of the diffusion-based solvers. Meanwhile, an immediate result of our findings on stability demonstrates the lack of robustness in diffusion-based solvers, which remains unexplored. This can degrade performance when the presumed likelihood mismatches the unknown true data generation processes. To address this issue, we propose a simple yet effective solution, \emph{robust diffusion posterior sampling}, which is provably \emph{robust} and compatible with existing gradient-based posterior samplers. Empirical results on scientific inverse problems and natural image tasks validate the effectiveness and robustness of our method, showing consistent performance improvements under challenging likelihood misspecifications.
Abstract:Targeted adversarial attacks on closed-source multimodal large language models (MLLMs) have been increasingly explored under black-box transfer, yet prior methods are predominantly sample-specific and offer limited reusability across inputs. We instead study a more stringent setting, Universal Targeted Transferable Adversarial Attacks (UTTAA), where a single perturbation must consistently steer arbitrary inputs toward a specified target across unknown commercial MLLMs. Naively adapting existing sample-wise attacks to this universal setting faces three core difficulties: (i) target supervision becomes high-variance due to target-crop randomness, (ii) token-wise matching is unreliable because universality suppresses image-specific cues that would otherwise anchor alignment, and (iii) few-source per-target adaptation is highly initialization-sensitive, which can degrade the attainable performance. In this work, we propose MCRMO-Attack, which stabilizes supervision via Multi-Crop Aggregation with an Attention-Guided Crop, improves token-level reliability through alignability-gated Token Routing, and meta-learns a cross-target perturbation prior that yields stronger per-target solutions. Across commercial MLLMs, we boost unseen-image attack success rate by +23.7\% on GPT-4o and +19.9\% on Gemini-2.0 over the strongest universal baseline.
Abstract:Evaluating the clinical correctness and reasoning fidelity of automatically generated medical imaging reports remains a critical yet unresolved challenge. Existing evaluation methods often fail to capture the structured diagnostic logic that underlies radiological interpretation, resulting in unreliable judgments and limited clinical relevance. We introduce AgentsEval, a multi-agent stream reasoning framework that emulates the collaborative diagnostic workflow of radiologists. By dividing the evaluation process into interpretable steps including criteria definition, evidence extraction, alignment, and consistency scoring, AgentsEval provides explicit reasoning traces and structured clinical feedback. We also construct a multi-domain perturbation-based benchmark covering five medical report datasets with diverse imaging modalities and controlled semantic variations. Experimental results demonstrate that AgentsEval delivers clinically aligned, semantically faithful, and interpretable evaluations that remain robust under paraphrastic, semantic, and stylistic perturbations. This framework represents a step toward transparent and clinically grounded assessment of medical report generation systems, fostering trustworthy integration of large language models into clinical practice.




Abstract:On-chip reconfigurable intelligent surfaces (RIS) are expected to play a vital role in future 6G communication systems. This work proposed a CMOS-compatible on-chip RIS capable of achieving beam steering for the first time. The proposed unit cell design is a combination of a slot, a phase-delay line with VO2, and a ground. Under the two states of the VO2, the unit cell has a 180 deg phase difference at the center frequency, while maintaining reflection magnitudes better than -1.2 dB. Moreover, a 60by60 RIS array based on the present novel unit is designed, demonstrating the beam-steering capability. Finally, to validate the design concept, a prototype is fabricated, and the detailed fabrication process is presented. The measurement result demonstrates a 27.1 dB enhancement between ON and OFF states. The proposed RIS has the advantages of low loss, CMOS-compatibility, providing a foundation for future 6G applications.




Abstract:In autonomous driving, end-to-end planners learn scene representations from raw sensor data and utilize them to generate a motion plan or control actions. However, exclusive reliance on the current scene for motion planning may result in suboptimal responses in highly dynamic traffic environments where ego actions further alter the future scene. To model the evolution of future scenes, we leverage the World Model to represent how the ego vehicle and its environment interact and change over time, which entails complex reasoning. The Chain of Thought (CoT) offers a promising solution by forecasting a sequence of future thoughts that subsequently guide trajectory refinement. In this paper, we propose FutureX, a CoT-driven pipeline that enhances end-to-end planners to perform complex motion planning via future scene latent reasoning and trajectory refinement. Specifically, the Auto-think Switch examines the current scene and decides whether additional reasoning is required to yield a higher-quality motion plan. Once FutureX enters the Thinking mode, the Latent World Model conducts a CoT-guided rollout to predict future scene representation, enabling the Summarizer Module to further refine the motion plan. Otherwise, FutureX operates in an Instant mode to generate motion plans in a forward pass for relatively simple scenes. Extensive experiments demonstrate that FutureX enhances existing methods by producing more rational motion plans and fewer collisions without compromising efficiency, thereby achieving substantial overall performance gains, e.g., 6.2 PDMS improvement for TransFuser on NAVSIM. Code will be released.
Abstract:Large-scale Video Foundation Models (VFMs) has significantly advanced various video-related tasks, either through task-specific models or Multi-modal Large Language Models (MLLMs). However, the open accessibility of VFMs also introduces critical security risks, as adversaries can exploit full knowledge of the VFMs to launch potent attacks. This paper investigates a novel and practical adversarial threat scenario: attacking downstream models or MLLMs fine-tuned from open-source VFMs, without requiring access to the victim task, training data, model query, and architecture. In contrast to conventional transfer-based attacks that rely on task-aligned surrogate models, we demonstrate that adversarial vulnerabilities can be exploited directly from the VFMs. To this end, we propose the Transferable Video Attack (TVA), a temporal-aware adversarial attack method that leverages the temporal representation dynamics of VFMs to craft effective perturbations. TVA integrates a bidirectional contrastive learning mechanism to maximize the discrepancy between the clean and adversarial features, and introduces a temporal consistency loss that exploits motion cues to enhance the sequential impact of perturbations. TVA avoids the need to train expensive surrogate models or access to domain-specific data, thereby offering a more practical and efficient attack strategy. Extensive experiments across 24 video-related tasks demonstrate the efficacy of TVA against downstream models and MLLMs, revealing a previously underexplored security vulnerability in the deployment of video models.



Abstract:The lattice Boltzmann equation (LBE), rooted in kinetic theory, provides a powerful framework for capturing complex flow behaviour by describing the evolution of single-particle distribution functions (PDFs). Despite its success, solving the LBE numerically remains computationally intensive due to strict time-step restrictions imposed by collision kernels. Here, we introduce a physics-informed neural operator framework for the LBE that enables prediction over large time horizons without step-by-step integration, effectively bypassing the need to explicitly solve the collision kernel. We incorporate intrinsic moment-matching constraints of the LBE, along with global equivariance of the full distribution field, enabling the model to capture the complex dynamics of the underlying kinetic system. Our framework is discretization-invariant, enabling models trained on coarse lattices to generalise to finer ones (kinetic super-resolution). In addition, it is agnostic to the specific form of the underlying collision model, which makes it naturally applicable across different kinetic datasets regardless of the governing dynamics. Our results demonstrate robustness across complex flow scenarios, including von Karman vortex shedding, ligament breakup, and bubble adhesion. This establishes a new data-driven pathway for modelling kinetic systems.
Abstract:Large language model-based machine learning (ML) agents have shown great promise in automating ML research. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent's ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, a novel agent that excels at exchanging insights and developing novel solutions within a community context. CoMind achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human competitors on average across four ongoing Kaggle competitions. Our code is released at https://github.com/comind-ml/CoMind.
Abstract:Fourier Neural Operators (FNOs) offer a principled approach for solving complex partial differential equations (PDEs). However, scaling them to handle more complex PDEs requires increasing the number of Fourier modes, which significantly expands the number of model parameters and makes hyperparameter tuning computationally impractical. To address this, we introduce $\mu$Transfer-FNO, a zero-shot hyperparameter transfer technique that enables optimal configurations, tuned on smaller FNOs, to be directly applied to billion-parameter FNOs without additional tuning. Building on the Maximal Update Parametrization ($\mu$P) framework, we mathematically derive a parametrization scheme that facilitates the transfer of optimal hyperparameters across models with different numbers of Fourier modes in FNOs, which is validated through extensive experiments on various PDEs. Our empirical study shows that Transfer-FNO reduces computational cost for tuning hyperparameters on large FNOs while maintaining or improving accuracy.