Abstract:Extreme edge-AI systems, such as those in readout ASICs for radiation detection, must operate under stringent hardware constraints such as micron-level dimensions, sub-milliwatt power, and nanosecond-scale speed while providing clear accuracy advantages over traditional architectures. Finding ideal solutions means identifying optimal AI and ASIC design choices from a design space that has explosively expanded during the merger of these domains, creating non-trivial couplings which together act upon a small set of solutions as constraints tighten. It is impractical, if not impossible, to manually determine ideal choices among possibilities that easily exceed billions even in small-size problems. Existing methods to bridge this gap have leveraged theoretical understanding of hardware to f architecture search. However, the assumptions made in computing such theoretical metrics are too idealized to provide sufficient guidance during the difficult search for a practical implementation. Meanwhile, theoretical estimates for many other crucial metrics (like delay) do not even exist and are similarly variable, dependent on parameters of the process design kit (PDK). To address these challenges, we present a study that employs intelligent search using multi-objective Bayesian optimization, integrating both neural network search and ASIC synthesis in the loop. This approach provides reliable feedback on the collective impact of all cross-domain design choices. We showcase the effectiveness of our approach by finding several Pareto-optimal design choices for effective and efficient neural networks that perform real-time feature extraction from input pulses within the individual pixels of a readout ASIC.
Abstract:Learning a continuous and reliable representation of physical fields from sparse sampling is challenging and it affects diverse scientific disciplines. In a recent work, we present a novel model called MMGN (Multiplicative and Modulated Gabor Network) with implicit neural networks. In this work, we design additional studies leveraging explainability methods to complement the previous experiments and further enhance the understanding of latent representations generated by the model. The adopted methods are general enough to be leveraged for any latent space inspection. Preliminary results demonstrate the contextual information incorporated in the latent representations and their impact on the model performance. As a work in progress, we will continue to verify our findings and develop novel explainability approaches.
Abstract:Reliably reconstructing physical fields from sparse sensor data is a challenge that frequently arises in many scientific domains. In practice, the process generating the data often is not understood to sufficient accuracy. Therefore, there is a growing interest in using the deep neural network route to address the problem. This work presents a novel approach that learns a continuous representation of the physical field using implicit neural representations (INRs). Specifically, after factorizing spatiotemporal variability into spatial and temporal components using the separation of variables technique, the method learns relevant basis functions from sparsely sampled irregular data points to develop a continuous representation of the data. In experimental evaluations, the proposed model outperforms recent INR methods, offering superior reconstruction quality on simulation data from a state-of-the-art climate model and a second dataset that comprises ultra-high resolution satellite-based sea surface temperature fields.
Abstract:High-energy large-scale particle colliders produce data at high speed in the order of 1 terabytes per second in nuclear physics and petabytes per second in high-energy physics. Developing real-time data compression algorithms to reduce such data at high throughput to fit permanent storage has drawn increasing attention. Specifically, at the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), a time projection chamber is used as the main tracking detector, which records particle trajectories in a volume of a three-dimensional (3D) cylinder. The resulting data are usually very sparse with occupancy around 10.8%. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. The 3D convolutional neural network (CNN)-based approach, Bicephalous Convolutional Autoencoder (BCAE), outperforms traditional methods both in compression rate and reconstruction accuracy. BCAE can also utilize the computation power of graphical processing units suitable for deployment in a modern heterogeneous high-performance computing environment. This work introduces two BCAE variants: BCAE++ and BCAE-2D. BCAE++ achieves a 15% better compression ratio and a 77% better reconstruction accuracy measured in mean absolute error compared with BCAE. BCAE-2D treats the radial direction as the channel dimension of an image, resulting in a 3x speedup in compression throughput. In addition, we demonstrate an unbalanced autoencoder with a larger decoder can improve reconstruction accuracy without significantly sacrificing throughput. Lastly, we observe both the BCAE++ and BCAE-2D can benefit more from using half-precision mode in throughput (76-79% increase) without loss in reconstruction accuracy. The source code and links to data and pretrained models can be found at https://github.com/BNL-DAQ-LDRD/NeuralCompression_v2.
Abstract:In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.
Abstract:Fast screening of drug molecules based on the ligand binding affinity is an important step in the drug discovery pipeline. Graph neural fingerprint is a promising method for developing molecular docking surrogates with high throughput and great fidelity. In this study, we built a COVID-19 drug docking dataset of about 300,000 drug candidates on 23 coronavirus protein targets. With this dataset, we trained graph neural fingerprint docking models for high-throughput virtual COVID-19 drug screening. The graph neural fingerprint models yield high prediction accuracy on docking scores with the mean squared error lower than $0.21$ kcal/mol for most of the docking targets, showing significant improvement over conventional circular fingerprint methods. To make the neural fingerprints transferable for unknown targets, we also propose a transferable graph neural fingerprint method trained on multiple targets. With comparable accuracy to target-specific graph neural fingerprint models, the transferable model exhibits superb training and data efficiency. We highlight that the impact of this study extends beyond COVID-19 dataset, as our approach for fast virtual ligand screening can be easily adapted and integrated into a general machine learning-accelerated pipeline to battle future bio-threats.
Abstract:Deep learning (DL) techniques have broad applications in science, especially in seeking to streamline the pathway to potential solutions and discoveries. Frequently, however, DL models are trained on the results of simulation yet applied to real experimental data. As such, any systematic differences between the simulated and real data may degrade the model's performance -- an effect known as "domain shift." This work studies a toy model of the systematic differences between simulated and real data. It presents a fully unsupervised, task-agnostic method to reduce differences between two systematically different samples. The method is based on the recent advances in unpaired image-to-image translation techniques and is validated on two sets of samples of simulated Liquid Argon Time Projection Chamber (LArTPC) detector events, created to illustrate common systematic differences between the simulated and real data in a controlled way. LArTPC-based detectors represent the next-generation particle detectors, producing unique high-resolution particle track data. This work open-sources the generated LArTPC data set, called Simple Liquid-Argon Track Samples (or SLATS), allowing researchers from diverse domains to study the LArTPC-like data for the first time. The code and trained models are available at https://github.com/LS4GAN/uvcgan4slats.
Abstract:An unpaired image-to-image (I2I) translation technique seeks to find a mapping between two domains of data in a fully unsupervised manner. While the initial solutions to the I2I problem were provided by the generative adversarial neural networks (GANs), currently, diffusion models (DM) hold the state-of-the-art status on the I2I translation benchmarks in terms of FID. Yet, they suffer from some limitations, such as not using data from the source domain during the training, or maintaining consistency of the source and translated images only via simple pixel-wise errors. This work revisits the classic CycleGAN model and equips it with recent advancements in model architectures and model training procedures. The revised model is shown to significantly outperform other advanced GAN- and DM-based competitors on a variety of benchmarks. In the case of Male2Female translation of CelebA, the model achieves over 40% improvement in FID score compared to the state-of-the-art results. This work also demonstrates the ineffectiveness of the pixel-wise I2I translation faithfulness metrics and suggests their revision. The code and trained models are available at https://github.com/LS4GAN/uvcgan2
Abstract:Image-to-image translation has broad applications in art, design, and scientific simulations. The original CycleGAN model emphasizes one-to-one mapping via a cycle-consistent loss, while more recent works promote one-to-many mapping to boost the diversity of the translated images. With scientific simulation and one-to-one needs in mind, this work examines if equipping CycleGAN with a vision transformer (ViT) and employing advanced generative adversarial network (GAN) training techniques can achieve better performance. The resulting UNet ViT Cycle-consistent GAN (UVCGAN) model is compared with previous best-performing models on open benchmark image-to-image translation datasets, Selfie2Anime and CelebA. UVCGAN performs better and retains a strong correlation between the original and translated images. An accompanying ablation study shows that the gradient penalty and BERT-like pre-training also contribute to the improvement.~To promote reproducibility and open science, the source code, hyperparameter configurations, and pre-trained model will be made available at: https://github.com/LS4GAN/uvcgan.
Abstract:Since model bias and associated initialization shock are serious shortcomings that reduce prediction skills in state-of-the-art decadal climate prediction efforts, we pursue a complementary machine-learning-based approach to climate prediction. The example problem setting we consider consists of predicting natural variability of the North Atlantic sea surface temperature on the interannual timescale in the pre-industrial control simulation of the Community Earth System Model (CESM2). While previous works have considered the use of recurrent networks such as convolutional LSTMs and reservoir computing networks in this and other similar problem settings, we currently focus on the use of feedforward convolutional networks. In particular, we find that a feedforward convolutional network with a Densenet architecture is able to outperform a convolutional LSTM in terms of predictive skill. Next, we go on to consider a probabilistic formulation of the same network based on Stein variational gradient descent and find that in addition to providing useful measures of predictive uncertainty, the probabilistic (Bayesian) version improves on its deterministic counterpart in terms of predictive skill. Finally, we characterize the reliability of the ensemble of ML models obtained in the probabilistic setting by using analysis tools developed in the context of ensemble numerical weather prediction.