Abstract:X-ray absorption spectroscopy (XAS) is a powerful characterization technique for probing the local chemical environment of absorbing atoms. However, analyzing XAS data presents with significant challenges, often requiring extensive, computationally intensive simulations, as well as significant domain expertise. These limitations hinder the development of fast, robust XAS analysis pipelines that are essential in high-throughput studies and for autonomous experimentation. We address these challenges with a suite of transfer learning approaches for XAS prediction, each uniquely contributing to improved accuracy and efficiency, as demonstrated on K-edge spectra database covering eight 3d transition metals (Ti-Cu). Our framework is built upon three distinct strategies. First, we use M3GNet to derive latent representations of the local chemical environment of absorption sites as input for XAS prediction, achieving up to order-of-magnitude improvements over conventional featurization techniques. Second, we employ a hierarchical transfer learning strategy, training a universal multi-task model across elements before fine-tuning for element-specific predictions. This cascaded approach after element-wise fine-turning yields models that outperform element-specific models by up to 31\%. Third, we implement cross-fidelity transfer learning, adapting a universal model to predict spectra generated by simulation of a different fidelity with a much higher computational cost. This approach improves prediction accuracy by up to 24\% over models trained on the target fidelity alone. Our approach is extendable to XAS prediction for a broader range of elements and offers a generalizable transfer learning framework to enhance other deep-learning models in materials science.
Abstract:Extreme edge-AI systems, such as those in readout ASICs for radiation detection, must operate under stringent hardware constraints such as micron-level dimensions, sub-milliwatt power, and nanosecond-scale speed while providing clear accuracy advantages over traditional architectures. Finding ideal solutions means identifying optimal AI and ASIC design choices from a design space that has explosively expanded during the merger of these domains, creating non-trivial couplings which together act upon a small set of solutions as constraints tighten. It is impractical, if not impossible, to manually determine ideal choices among possibilities that easily exceed billions even in small-size problems. Existing methods to bridge this gap have leveraged theoretical understanding of hardware to f architecture search. However, the assumptions made in computing such theoretical metrics are too idealized to provide sufficient guidance during the difficult search for a practical implementation. Meanwhile, theoretical estimates for many other crucial metrics (like delay) do not even exist and are similarly variable, dependent on parameters of the process design kit (PDK). To address these challenges, we present a study that employs intelligent search using multi-objective Bayesian optimization, integrating both neural network search and ASIC synthesis in the loop. This approach provides reliable feedback on the collective impact of all cross-domain design choices. We showcase the effectiveness of our approach by finding several Pareto-optimal design choices for effective and efficient neural networks that perform real-time feature extraction from input pulses within the individual pixels of a readout ASIC.