Abstract:Decoding human activity from EEG signals has long been a popular research topic. While recent studies have increasingly shifted focus from single-subject to cross-subject analysis, few have explored the model's ability to perform zero-shot predictions on EEG signals from previously unseen subjects. This research aims to investigate whether deep learning methods can capture subject-independent semantic information inherent in human EEG signals. Such insights are crucial for Brain-Computer Interfaces (BCI) because, on one hand, they demonstrate the model's robustness against subject-specific temporal biases, and on the other, they significantly enhance the generalizability of downstream tasks. We employ Large Language Models (LLMs) as denoising agents to extract subject-independent semantic features from noisy EEG signals. Experimental results, including ablation studies, highlight the pivotal role of LLMs in decoding subject-independent semantic information from noisy EEG data. We hope our findings will contribute to advancing BCI research and assist both academia and industry in applying EEG signals to a broader range of applications.
Abstract:High-energy large-scale particle colliders generate data at extraordinary rates. Developing real-time high-throughput data compression algorithms to reduce data volume and meet the bandwidth requirement for storage has become increasingly critical. Deep learning is a promising technology that can address this challenging topic. At the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider, a Time Projection Chamber (TPC) serves as the main tracking detector, which records three-dimensional particle trajectories in a volume of a gas-filled cylinder. In terms of occupancy, the resulting data flow can be very sparse reaching $10^{-3}$ for proton-proton collisions. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. In contrast, emerging deep learning-based models, particularly those utilizing convolutional neural networks for compression, have outperformed these conventional methods in terms of compression ratios and reconstruction accuracy. However, research on the efficacy of these deep learning models in handling sparse datasets, like those produced in particle colliders, remains limited. Furthermore, most deep learning models do not adapt their processing speeds to data sparsity, which affects efficiency. To address this issue, we propose a novel approach for TPC data compression via key-point identification facilitated by sparse convolution. Our proposed algorithm, BCAE-VS, achieves a $75\%$ improvement in reconstruction accuracy with a $10\%$ increase in compression ratio over the previous state-of-the-art model. Additionally, BCAE-VS manages to achieve these results with a model size over two orders of magnitude smaller. Lastly, we have experimentally verified that as sparsity increases, so does the model's throughput.