Abstract:Prevalent in biological applications (e.g., human phenotype measurements), multimodal datasets can provide valuable insights into the underlying biological mechanisms. However, current machine learning models designed to analyze such datasets still lack interpretability and theoretical guarantees, which are essential to biological applications. Recent advances in causal representation learning have shown promise in uncovering the interpretable latent causal variables with formal theoretical certificates. Unfortunately, existing works for multimodal distributions either rely on restrictive parametric assumptions or provide rather coarse identification results, limiting their applicability to biological research which favors a detailed understanding of the mechanisms. In this work, we aim to develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biological datasets. Theoretically, we consider a flexible nonparametric latent distribution (c.f., parametric assumptions in prior work) permitting causal relationships across potentially different modalities. We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work. Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities, which, as we will discuss, is natural for a large collection of biological systems. Empirically, we propose a practical framework to instantiate our theoretical insights. We demonstrate the effectiveness of our approach through extensive experiments on both numerical and synthetic datasets. Results on a real-world human phenotype dataset are consistent with established medical research, validating our theoretical and methodological framework.
Abstract:In sequential decision-making (SDM) tasks, methods like reinforcement learning (RL) and heuristic search have made notable advances in specific cases. However, they often require extensive exploration and face challenges in generalizing across diverse environments due to their limited grasp of the underlying decision dynamics. In contrast, large language models (LLMs) have recently emerged as powerful general-purpose tools, due to their capacity to maintain vast amounts of domain-specific knowledge. To harness this rich prior knowledge for efficiently solving complex SDM tasks, we propose treating LLMs as prior action distributions and integrating them into RL frameworks through Bayesian inference methods, making use of variational inference and direct posterior sampling. The proposed approaches facilitate the seamless incorporation of fixed LLM priors into both policy-based and value-based RL frameworks. Our experiments show that incorporating LLM-based action priors significantly reduces exploration and optimization complexity, substantially improving sample efficiency compared to traditional RL techniques, e.g., using LLM priors decreases the number of required samples by over 90% in offline learning scenarios.
Abstract:In human-AI interaction, a prominent goal is to attain human`s desirable outcome with the assistance of AI agents, which can be ideally delineated as a problem of seeking the optimal Nash Equilibrium that matches the human`s desirable outcome. However, reaching the outcome is usually challenging due to the existence of multiple Nash Equilibria that are related to the assisting task but do not correspond to the human`s desirable outcome. To tackle this issue, we employ a theoretical framework called structural causal game (SCG) to formalize the human-AI interactive process. Furthermore, we introduce a strategy referred to as pre-policy intervention on the SCG to steer AI agents towards attaining the human`s desirable outcome. In more detail, a pre-policy is learned as a generalized intervention to guide the agents` policy selection, under a transparent and interpretable procedure determined by the SCG. To make the framework practical, we propose a reinforcement learning-like algorithm to search out this pre-policy. The proposed algorithm is tested in both gridworld environments and realistic dialogue scenarios with large language models, demonstrating its adaptability in a broader class of problems and potential effectiveness in real-world situations.
Abstract:Reinforcement Learning (RL) has shown remarkable abilities in learning policies for decision-making tasks. However, RL is often hindered by issues such as low sample efficiency, lack of interpretability, and sparse supervision signals. To tackle these limitations, we take inspiration from the human learning process and introduce Natural Language Reinforcement Learning (NLRL), which innovatively combines RL principles with natural language representation. Specifically, NLRL redefines RL concepts like task objectives, policy, value function, Bellman equation, and policy iteration in natural language space. We present how NLRL can be practically implemented with the latest advancements in large language models (LLMs) like GPT-4. Initial experiments over tabular MDPs demonstrate the effectiveness, efficiency, and also interpretability of the NLRL framework.
Abstract:Ranking items regarding individual user interests is a core technique of multiple downstream tasks such as recommender systems. Learning such a personalized ranker typically relies on the implicit feedback from users' past click-through behaviors. However, collected feedback is biased toward previously highly-ranked items and directly learning from it would result in a "rich-get-richer" phenomenon. In this paper, we propose a simple yet sufficient unbiased learning-to-rank paradigm named InfoRank that aims to simultaneously address both position and popularity biases. We begin by consolidating the impacts of those biases into a single observation factor, thereby providing a unified approach to addressing bias-related issues. Subsequently, we minimize the mutual information between the observation estimation and the relevance estimation conditioned on the input features. By doing so, our relevance estimation can be proved to be free of bias. To implement InfoRank, we first incorporate an attention mechanism to capture latent correlations within user-item features, thereby generating estimations of observation and relevance. We then introduce a regularization term, grounded in conditional mutual information, to promote conditional independence between relevance estimation and observation estimation. Experimental evaluations conducted across three extensive recommendation and search datasets reveal that InfoRank learns more precise and unbiased ranking strategies.
Abstract:Learning representations purely from observations concerns the problem of learning a low-dimensional, compact representation which is beneficial to prediction models. Under the hypothesis that the intrinsic latent factors follow some casual generative models, we argue that by learning a causal representation, which is the minimal sufficient causes of the whole system, we can improve the robustness and generalization performance of machine learning models. In this paper, we develop a learning method to learn such representation from observational data by regularizing the learning procedure with mutual information measures, according to the hypothetical factored causal graph. We theoretically and empirically show that the models trained with the learned causal representations are more robust under adversarial attacks and distribution shifts compared with baselines. The supplementary materials are available at https://github.com/ymy $4323460 / \mathrm{CaRI} /$.
Abstract:Recommender systems trained on offline historical user behaviors are embracing conversational techniques to online query user preference. Unlike prior conversational recommendation approaches that systemically combine conversational and recommender parts through a reinforcement learning framework, we propose CORE, a new offline-training and online-checking paradigm that bridges a COnversational agent and REcommender systems via a unified uncertainty minimization framework. It can benefit any recommendation platform in a plug-and-play style. Here, CORE treats a recommender system as an offline relevance score estimator to produce an estimated relevance score for each item; while a conversational agent is regarded as an online relevance score checker to check these estimated scores in each session. We define uncertainty as the summation of unchecked relevance scores. In this regard, the conversational agent acts to minimize uncertainty via querying either attributes or items. Based on the uncertainty minimization framework, we derive the expected certainty gain of querying each attribute and item, and develop a novel online decision tree algorithm to decide what to query at each turn. Experimental results on 8 industrial datasets show that CORE could be seamlessly employed on 9 popular recommendation approaches. We further demonstrate that our conversational agent could communicate as a human if empowered by a pre-trained large language model.
Abstract:Out-of-distribution (OOD) generalization is indispensable for learning models in the wild, where testing distribution typically unknown and different from the training. Recent methods derived from causality have shown great potential in achieving OOD generalization. However, existing methods mainly focus on the invariance property of causes, while largely overlooking the property of \textit{sufficiency} and \textit{necessity} conditions. Namely, a necessary but insufficient cause (feature) is invariant to distribution shift, yet it may not have required accuracy. By contrast, a sufficient yet unnecessary cause (feature) tends to fit specific data well but may have a risk of adapting to a new domain. To capture the information of sufficient and necessary causes, we employ a classical concept, the probability of sufficiency and necessary causes (PNS), which indicates the probability of whether one is the necessary and sufficient cause. To associate PNS with OOD generalization, we propose PNS risk and formulate an algorithm to learn representation with a high PNS value. We theoretically analyze and prove the generalizability of the PNS risk. Experiments on both synthetic and real-world benchmarks demonstrate the effectiveness of the proposed method. The details of the implementation can be found at the GitHub repository: https://github.com/ymy4323460/CaSN.
Abstract:Learning-to-rank is a core technique in the top-N recommendation task, where an ideal ranker would be a mapping from an item set to an arrangement (a.k.a. permutation). Most existing solutions fall in the paradigm of probabilistic ranking principle (PRP), i.e., first score each item in the candidate set and then perform a sort operation to generate the top ranking list. However, these approaches neglect the contextual dependence among candidate items during individual scoring, and the sort operation is non-differentiable. To bypass the above issues, we propose Set-To-Arrangement Ranking (STARank), a new framework directly generates the permutations of the candidate items without the need for individually scoring and sort operations; and is end-to-end differentiable. As a result, STARank can operate when only the ground-truth permutations are accessible without requiring access to the ground-truth relevance scores for items. For this purpose, STARank first reads the candidate items in the context of the user browsing history, whose representations are fed into a Plackett-Luce module to arrange the given items into a list. To effectively utilize the given ground-truth permutations for supervising STARank, we leverage the internal consistency property of Plackett-Luce models to derive a computationally efficient list-wise loss. Experimental comparisons against 9 the state-of-the-art methods on 2 learning-to-rank benchmark datasets and 3 top-N real-world recommendation datasets demonstrate the superiority of STARank in terms of conventional ranking metrics. Notice that these ranking metrics do not consider the effects of the contextual dependence among the items in the list, we design a new family of simulation-based ranking metrics, where existing metrics can be regarded as special cases. STARank can consistently achieve better performance in terms of PBM and UBM simulation-based metrics.
Abstract:When solving decision-making tasks, humans typically depend on information from two key sources: (1) Historical policy data, which provides interaction replay from the environment, and (2) Analytical insights in natural language form, exposing the invaluable thought process or strategic considerations. Despite this, the majority of preceding research focuses on only one source: they either use historical replay exclusively to directly learn policy or value functions, or engaged in language model training utilizing mere language corpus. In this paper, we argue that a powerful autonomous agent should cover both sources. Thus, we propose ChessGPT, a GPT model bridging policy learning and language modeling by integrating data from these two sources in Chess games. Specifically, we build a large-scale game and language dataset related to chess. Leveraging the dataset, we showcase two model examples ChessCLIP and ChessGPT, integrating policy learning and language modeling. Finally, we propose a full evaluation framework for evaluating language model's chess ability. Experimental results validate our model and dataset's effectiveness. We open source our code, model, and dataset at https://github.com/waterhorse1/ChessGPT.