Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.
Abstract:Scene observation from multiple perspectives would bring a more comprehensive visual experience. However, in the context of acquiring multiple views in the dark, the highly correlated views are seriously alienated, making it challenging to improve scene understanding with auxiliary views. Recent single image-based enhancement methods may not be able to provide consistently desirable restoration performance for all views due to the ignorance of potential feature correspondence among different views. To alleviate this issue, we make the first attempt to investigate multi-view low-light image enhancement. First, we construct a new dataset called Multi-View Low-light Triplets (MVLT), including 1,860 pairs of triple images with large illumination ranges and wide noise distribution. Each triplet is equipped with three different viewpoints towards the same scene. Second, we propose a deep multi-view enhancement framework based on the Recurrent Collaborative Network (RCNet). Specifically, in order to benefit from similar texture correspondence across different views, we design the recurrent feature enhancement, alignment and fusion (ReEAF) module, in which intra-view feature enhancement (Intra-view EN) followed by inter-view feature alignment and fusion (Inter-view AF) is performed to model the intra-view and inter-view feature propagation sequentially via multi-view collaboration. In addition, two different modules from enhancement to alignment (E2A) and from alignment to enhancement (A2E) are developed to enable the interactions between Intra-view EN and Inter-view AF, which explicitly utilize attentive feature weighting and sampling for enhancement and alignment, respectively. Experimental results demonstrate that our RCNet significantly outperforms other state-of-the-art methods. All of our dataset, code, and model will be available at https://github.com/hluo29/RCNet.
Abstract:Obtaining pairs of low/normal-light videos, with motions, is more challenging than still images, which raises technical issues and poses the technical route of unpaired learning as a critical role. This paper makes endeavors in the direction of learning for low-light video enhancement without using paired ground truth. Compared to low-light image enhancement, enhancing low-light videos is more difficult due to the intertwined effects of noise, exposure, and contrast in the spatial domain, jointly with the need for temporal coherence. To address the above challenge, we propose the Unrolled Decomposed Unpaired Network (UDU-Net) for enhancing low-light videos by unrolling the optimization functions into a deep network to decompose the signal into spatial and temporal-related factors, which are updated iteratively. Firstly, we formulate low-light video enhancement as a Maximum A Posteriori estimation (MAP) problem with carefully designed spatial and temporal visual regularization. Then, via unrolling the problem, the optimization of the spatial and temporal constraints can be decomposed into different steps and updated in a stage-wise manner. From the spatial perspective, the designed Intra subnet leverages unpair prior information from expert photography retouched skills to adjust the statistical distribution. Additionally, we introduce a novel mechanism that integrates human perception feedback to guide network optimization, suppressing over/under-exposure conditions. Meanwhile, to address the issue from the temporal perspective, the designed Inter subnet fully exploits temporal cues in progressive optimization, which helps achieve improved temporal consistency in enhancement results. Consequently, the proposed method achieves superior performance to state-of-the-art methods in video illumination, noise suppression, and temporal consistency across outdoor and indoor scenes.
Abstract:While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce Compare2Score-an all-around LMM-based no-reference IQA (NR-IQA) model, which is capable of producing qualitatively comparative responses and effectively translating these discrete comparative levels into a continuous quality score. Specifically, during training, we present to generate scaled-up comparative instructions by comparing images from the same IQA dataset, allowing for more flexible integration of diverse IQA datasets. Utilizing the established large-scale training corpus, we develop a human-like visual quality comparator. During inference, moving beyond binary choices, we propose a soft comparison method that calculates the likelihood of the test image being preferred over multiple predefined anchor images. The quality score is further optimized by maximum a posteriori estimation with the resulting probability matrix. Extensive experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training with converted single image quality score for inference, surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we verify that the probability-matrix-based inference conversion not only improves the rating accuracy of Compare2Score but also zero-shot general-purpose LMMs, suggesting its intrinsic effectiveness.
Abstract:Deep learning-based full-reference image quality assessment (FR-IQA) models typically rely on the feature distance between the reference and distorted images. However, the underlying assumption of these models that the distance in the deep feature domain could quantify the quality degradation does not scientifically align with the invariant texture perception, especially when the images are generated artificially by neural networks. In this paper, we bring a radical shift in inferring the quality with learned features and propose the Deep Image Dependency (DID) based FR-IQA model. The feature dependency facilitates the comparisons of deep learning features in a high-order manner with Brownian distance covariance, which is characterized by the joint distribution of the features from reference and test images, as well as their marginal distributions. This enables the quantification of the feature dependency against nonlinear transformation, which is far beyond the computation of the numerical errors in the feature space. Experiments on image quality prediction, texture image similarity, and geometric invariance validate the superior performance of our proposed measure.
Abstract:The statistical regularities of natural images, referred to as natural scene statistics, play an important role in no-reference image quality assessment. However, it has been widely acknowledged that screen content images (SCIs), which are typically computer generated, do not hold such statistics. Here we make the first attempt to learn the statistics of SCIs, based upon which the quality of SCIs can be effectively determined. The underlying mechanism of the proposed approach is based upon the wild assumption that the SCIs, which are not physically acquired, still obey certain statistics that could be understood in a learning fashion. We empirically show that the statistics deviation could be effectively leveraged in quality assessment, and the proposed method is superior when evaluated in different settings. Extensive experimental results demonstrate the Deep Feature Statistics based SCI Quality Assessment (DFSS-IQA) model delivers promising performance compared with existing NR-IQA models and shows a high generalization capability in the cross-dataset settings. The implementation of our method is publicly available at https://github.com/Baoliang93/DFSS-IQA.
Abstract:This paper focuses on perceiving and navigating 3D environments using echoes and RGB image. In particular, we perform depth estimation by fusing RGB image with echoes, received from multiple orientations. Unlike previous works, we go beyond the field of view of the RGB and estimate dense depth maps for substantially larger parts of the environment. We show that the echoes provide holistic and in-expensive information about the 3D structures complementing the RGB image. Moreover, we study how echoes and the wide field-of-view depth maps can be utilised in robot navigation. We compare the proposed methods against recent baselines using two sets of challenging realistic 3D environments: Replica and Matterport3D. The implementation and pre-trained models will be made publicly available.
Abstract:There is an increasing consensus that the design and optimization of low light image enhancement methods need to be fully driven by perceptual quality. With numerous approaches proposed to enhance low-light images, much less work has been dedicated to quality assessment and quality optimization of low-light enhancement. In this paper, to close the gap between enhancement and assessment, we propose a loop enhancement framework that produces a clear picture of how the enhancement of low-light images could be optimized towards better visual quality. In particular, we create a large-scale database for QUality assessment Of The Enhanced LOw-Light Image (QUOTE-LOL), which serves as the foundation in studying and developing objective quality assessment measures. The objective quality assessment measure plays a critical bridging role between visual quality and enhancement and is further incorporated in the optimization in learning the enhancement model towards perceptual optimally. Finally, we iteratively perform the enhancement and optimization tasks, enhancing the low-light images continuously. The superiority of the proposed scheme is validated based on various low-light scenes. The database as well as the code will be available.
Abstract:The objective of this paper is to perform visual sound separation: i) we study visual sound separation on spectrograms of different temporal resolutions; ii) we propose a new light yet efficient three-stream framework V-SlowFast that operates on Visual frame, Slow spectrogram, and Fast spectrogram. The Slow spectrogram captures the coarse temporal resolution while the Fast spectrogram contains the fine-grained temporal resolution; iii) we introduce two contrastive objectives to encourage the network to learn discriminative visual features for separating sounds; iv) we propose an audio-visual global attention module for audio and visual feature fusion; v) the introduced V-SlowFast model outperforms previous state-of-the-art in single-frame based visual sound separation on small- and large-scale datasets: MUSIC-21, AVE, and VGG-Sound. We also propose a small V-SlowFast architecture variant, which achieves 74.2% reduction in the number of model parameters and 81.4% reduction in GMACs compared to the previous multi-stage models. Project page: https://ly-zhu.github.io/V-SlowFast
Abstract:In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behaviors and rooted in the view that the perceptually meaningful features could be well exploited to characterize the visual quality. Herein, the PR features from the distorted images are learned by a mutual learning scheme with the pristine reference as the supervision, and the discriminative characteristics of PR features are further ensured with the triplet constraints. Given a distorted image for quality inference, the feature level disentanglement is performed with an invertible neural layer for final quality prediction, leading to the PR and the corresponding distortion features for comparison. The effectiveness of our proposed method is demonstrated on four popular IQA databases, and superior performance on cross-database evaluation also reveals the high generalization capability of our method. The implementation of our method is publicly available on https://github.com/Baoliang93/FPR.