Abstract:Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitably leads to a heavy reliance on image semantics when those LMMs are forced for quality rating. In this paper, instead of retraining or tuning an LMM costly, we propose a training-free debiasing framework, in which the image quality prediction is rectified by mitigating the bias caused by image semantics. Specifically, we first explore several semantic-preserving distortions that can significantly degrade image quality while maintaining identifiable semantics. By applying these specific distortions to the query or test images, we ensure that the degraded images are recognized as poor quality while their semantics remain. During quality inference, both a query image and its corresponding degraded version are fed to the LMM along with a prompt indicating that the query image quality should be inferred under the condition that the degraded one is deemed poor quality.This prior condition effectively aligns the LMM's quality perception, as all degraded images are consistently rated as poor quality, regardless of their semantic difference.Finally, the quality scores of the query image inferred under different prior conditions (degraded versions) are aggregated using a conditional probability model. Extensive experiments on various IQA datasets show that our debiasing framework could consistently enhance the LMM performance and the code will be publicly available.
Abstract:Scene observation from multiple perspectives would bring a more comprehensive visual experience. However, in the context of acquiring multiple views in the dark, the highly correlated views are seriously alienated, making it challenging to improve scene understanding with auxiliary views. Recent single image-based enhancement methods may not be able to provide consistently desirable restoration performance for all views due to the ignorance of potential feature correspondence among different views. To alleviate this issue, we make the first attempt to investigate multi-view low-light image enhancement. First, we construct a new dataset called Multi-View Low-light Triplets (MVLT), including 1,860 pairs of triple images with large illumination ranges and wide noise distribution. Each triplet is equipped with three different viewpoints towards the same scene. Second, we propose a deep multi-view enhancement framework based on the Recurrent Collaborative Network (RCNet). Specifically, in order to benefit from similar texture correspondence across different views, we design the recurrent feature enhancement, alignment and fusion (ReEAF) module, in which intra-view feature enhancement (Intra-view EN) followed by inter-view feature alignment and fusion (Inter-view AF) is performed to model the intra-view and inter-view feature propagation sequentially via multi-view collaboration. In addition, two different modules from enhancement to alignment (E2A) and from alignment to enhancement (A2E) are developed to enable the interactions between Intra-view EN and Inter-view AF, which explicitly utilize attentive feature weighting and sampling for enhancement and alignment, respectively. Experimental results demonstrate that our RCNet significantly outperforms other state-of-the-art methods. All of our dataset, code, and model will be available at https://github.com/hluo29/RCNet.
Abstract:Obtaining pairs of low/normal-light videos, with motions, is more challenging than still images, which raises technical issues and poses the technical route of unpaired learning as a critical role. This paper makes endeavors in the direction of learning for low-light video enhancement without using paired ground truth. Compared to low-light image enhancement, enhancing low-light videos is more difficult due to the intertwined effects of noise, exposure, and contrast in the spatial domain, jointly with the need for temporal coherence. To address the above challenge, we propose the Unrolled Decomposed Unpaired Network (UDU-Net) for enhancing low-light videos by unrolling the optimization functions into a deep network to decompose the signal into spatial and temporal-related factors, which are updated iteratively. Firstly, we formulate low-light video enhancement as a Maximum A Posteriori estimation (MAP) problem with carefully designed spatial and temporal visual regularization. Then, via unrolling the problem, the optimization of the spatial and temporal constraints can be decomposed into different steps and updated in a stage-wise manner. From the spatial perspective, the designed Intra subnet leverages unpair prior information from expert photography retouched skills to adjust the statistical distribution. Additionally, we introduce a novel mechanism that integrates human perception feedback to guide network optimization, suppressing over/under-exposure conditions. Meanwhile, to address the issue from the temporal perspective, the designed Inter subnet fully exploits temporal cues in progressive optimization, which helps achieve improved temporal consistency in enhancement results. Consequently, the proposed method achieves superior performance to state-of-the-art methods in video illumination, noise suppression, and temporal consistency across outdoor and indoor scenes.
Abstract:Full-reference image quality assessment (FR-IQA) models generally operate by measuring the visual differences between a degraded image and its reference. However, existing FR-IQA models including both the classical ones (eg, PSNR and SSIM) and deep-learning based measures (eg, LPIPS and DISTS) still exhibit limitations in capturing the full perception characteristics of the human visual system (HVS). In this paper, instead of designing a new FR-IQA measure, we aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating and enhance existing IQA models. In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image. The dependency is captured in a training-free manner by our proposed sliced maximal information coefficient and exhibits surprising generalization in different IQA measures. Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated. The source code is available at https://github.com/KANGX99/SMIC.
Abstract:While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce Compare2Score-an all-around LMM-based no-reference IQA (NR-IQA) model, which is capable of producing qualitatively comparative responses and effectively translating these discrete comparative levels into a continuous quality score. Specifically, during training, we present to generate scaled-up comparative instructions by comparing images from the same IQA dataset, allowing for more flexible integration of diverse IQA datasets. Utilizing the established large-scale training corpus, we develop a human-like visual quality comparator. During inference, moving beyond binary choices, we propose a soft comparison method that calculates the likelihood of the test image being preferred over multiple predefined anchor images. The quality score is further optimized by maximum a posteriori estimation with the resulting probability matrix. Extensive experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training with converted single image quality score for inference, surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we verify that the probability-matrix-based inference conversion not only improves the rating accuracy of Compare2Score but also zero-shot general-purpose LMMs, suggesting its intrinsic effectiveness.
Abstract:While abundant research has been conducted on improving high-level visual understanding and reasoning capabilities of large multimodal models~(LMMs), their visual quality assessment~(IQA) ability has been relatively under-explored. Here we take initial steps towards this goal by employing the two-alternative forced choice~(2AFC) prompting, as 2AFC is widely regarded as the most reliable way of collecting human opinions of visual quality. Subsequently, the global quality score of each image estimated by a particular LMM can be efficiently aggregated using the maximum a posterior estimation. Meanwhile, we introduce three evaluation criteria: consistency, accuracy, and correlation, to provide comprehensive quantifications and deeper insights into the IQA capability of five LMMs. Extensive experiments show that existing LMMs exhibit remarkable IQA ability on coarse-grained quality comparison, but there is room for improvement on fine-grained quality discrimination. The proposed dataset sheds light on the future development of IQA models based on LMMs. The codes will be made publicly available at https://github.com/h4nwei/2AFC-LMMs.
Abstract:Recent years have witnessed an exponential increase in the demand for face video compression, and the success of artificial intelligence has expanded the boundaries beyond traditional hybrid video coding. Generative coding approaches have been identified as promising alternatives with reasonable perceptual rate-distortion trade-offs, leveraging the statistical priors of face videos. However, the great diversity of distortion types in spatial and temporal domains, ranging from the traditional hybrid coding frameworks to generative models, present grand challenges in compressed face video quality assessment (VQA). In this paper, we introduce the large-scale Compressed Face Video Quality Assessment (CFVQA) database, which is the first attempt to systematically understand the perceptual quality and diversified compression distortions in face videos. The database contains 3,240 compressed face video clips in multiple compression levels, which are derived from 135 source videos with diversified content using six representative video codecs, including two traditional methods based on hybrid coding frameworks, two end-to-end methods, and two generative methods. In addition, a FAce VideO IntegeRity (FAVOR) index for face video compression was developed to measure the perceptual quality, considering the distinct content characteristics and temporal priors of the face videos. Experimental results exhibit its superior performance on the proposed CFVQA dataset. The benchmark is now made publicly available at: https://github.com/Yixuan423/Compressed-Face-Videos-Quality-Assessment.
Abstract:Mapping images to deep feature space for comparisons has been wildly adopted in recent learning-based full-reference image quality assessment (FR-IQA) models. Analogous to the classical classification task, the ideal mapping space for quality regression should possess both inter-class separability and intra-class compactness. The inter-class separability that focuses on the discrimination of images with different quality levels has been highly emphasized in existing models. However, the intra-class compactness that maintains small objective quality variance of images with the same or indistinguishable quality escapes the research attention, potentially leading to the perception-biased measures. In this paper, we reveal that such bias is mainly caused by the unsuitable subspace that the features are projected and compared in. To account for this, we develop the Debiased Mapping based quality Measure (DMM), which relies on the orthonormal bases of deep learning features formed by singular value decomposition (SVD). The SVD in deep learning feature domain, which overwhelmingly separates the quality variations with singular values and projection bases, facilitates the quality inference with dedicatedly designed distance measure. Experiments on different IQA databases demonstrate the mapping method is able to mitigate the perception bias efficiently, and the superior performance on quality prediction verifies the effectiveness of our method. The implementation will be publicly available.
Abstract:Deep learning-based full-reference image quality assessment (FR-IQA) models typically rely on the feature distance between the reference and distorted images. However, the underlying assumption of these models that the distance in the deep feature domain could quantify the quality degradation does not scientifically align with the invariant texture perception, especially when the images are generated artificially by neural networks. In this paper, we bring a radical shift in inferring the quality with learned features and propose the Deep Image Dependency (DID) based FR-IQA model. The feature dependency facilitates the comparisons of deep learning features in a high-order manner with Brownian distance covariance, which is characterized by the joint distribution of the features from reference and test images, as well as their marginal distributions. This enables the quantification of the feature dependency against nonlinear transformation, which is far beyond the computation of the numerical errors in the feature space. Experiments on image quality prediction, texture image similarity, and geometric invariance validate the superior performance of our proposed measure.
Abstract:Deep learning based image quality assessment (IQA) models usually learn to predict image quality from a single dataset, leading the model to overfit specific scenes. To account for this, mixed datasets training can be an effective way to enhance the generalization capability of the model. However, it is nontrivial to combine different IQA datasets, as their quality evaluation criteria, score ranges, view conditions, as well as subjects are usually not shared during the image quality annotation. In this paper, instead of aligning the annotations, we propose a monotonic neural network for IQA model learning with different datasets combined. In particular, our model consists of a dataset-shared quality regressor and several dataset-specific quality transformers. The quality regressor aims to obtain the perceptual qualities of each dataset while each quality transformer maps the perceptual qualities to the corresponding dataset annotations with their monotonicity maintained. The experimental results verify the effectiveness of the proposed learning strategy and our code is available at https://github.com/fzp0424/MonotonicIQA.