School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
Abstract:This short paper presents preliminary research on the Case-Enhanced Vision Transformer (CEViT), a similarity measurement method aimed at improving the explainability of similarity assessments for image data. Initial experimental results suggest that integrating CEViT into k-Nearest Neighbor (k-NN) classification yields classification accuracy comparable to state-of-the-art computer vision models, while adding capabilities for illustrating differences between classes. CEViT explanations can be influenced by prior cases, to illustrate aspects of similarity relevant to those cases.
Abstract:Data-driven deep learning models have shown great capabilities to assist radiologists in breast ultrasound (US) diagnoses. However, their effectiveness is limited by the long-tail distribution of training data, which leads to inaccuracies in rare cases. In this study, we address a long-standing challenge of improving the diagnostic model performance on rare cases using long-tailed data. Specifically, we introduce a pipeline, TAILOR, that builds a knowledge-driven generative model to produce tailored synthetic data. The generative model, using 3,749 lesions as source data, can generate millions of breast-US images, especially for error-prone rare cases. The generated data can be further used to build a diagnostic model for accurate and interpretable diagnoses. In the prospective external evaluation, our diagnostic model outperforms the average performance of nine radiologists by 33.5% in specificity with the same sensitivity, improving their performance by providing predictions with an interpretable decision-making process. Moreover, on ductal carcinoma in situ (DCIS), our diagnostic model outperforms all radiologists by a large margin, with only 34 DCIS lesions in the source data. We believe that TAILOR can potentially be extended to various diseases and imaging modalities.
Abstract:Last year has witnessed the re-flourishment of tag-aware recommender systems supported by the LLM-enriched tags. Unfortunately, though large efforts have been made, current solutions may fail to describe the diversity and uncertainty inherent in user preferences with only tag-driven profiles. Recently, with the development of geometry-based techniques, e.g., box embedding, diversity of user preferences now could be fully modeled as the range within a box in high dimension space. However, defect still exists as these approaches are incapable of capturing high-order neighbor signals, i.e., semantic-rich multi-hop relations within the user-tag-item tripartite graph, which severely limits the effectiveness of user modeling. To deal with this challenge, in this paper, we propose a novel algorithm, called BoxGNN, to perform the message aggregation via combination of logical operations, thereby incorporating high-order signals. Specifically, we first embed users, items, and tags as hyper-boxes rather than simple points in the representation space, and define two logical operations to facilitate the subsequent process. Next, we perform the message aggregation mechanism via the combination of logical operations, to obtain the corresponding high-order box representations. Finally, we adopt a volume-based learning objective with Gumbel smoothing techniques to refine the representation of boxes. Extensive experiments on two publicly available datasets and one LLM-enhanced e-commerce dataset have validated the superiority of BoxGNN compared with various state-of-the-art baselines. The code is released online
Abstract:Human-in-the-loop (HITL) strategy has been recently introduced into the field of medical image processing. Indocyanine green angiography (ICGA) stands as a well-established examination for visualizing choroidal vasculature and detecting chorioretinal diseases. However, the intricate nature of choroidal vascular networks makes large-scale manual segmentation of ICGA images challenging. Thus, the study aims to develop a high-precision choroidal vessel segmentation model with limited labor using HITL framework. We utilized a multi-source ICGA dataset, including 55 degree view and ultra-widefield ICGA (UWF-ICGA) images for model development. The choroidal vessel network was pre-segmented by a pre-trained vessel segmentation model, and then manually modified by two ophthalmologists. Choroidal vascular diameter, density, complexity, tortuosity, and branching angle were automatically quantified based on the segmentation. We finally conducted four cycles of HITL. One hundred and fifty 55 degree view ICGA images were used for the first three cycles (50 images per cycle), and twenty UWF-ICGA images for the last cycle. The average time needed to manually correct a pre-segmented ICGA image per cycle reduced from 20 minutes to 1 minute. High segmentation accuracy has been achieved on both 55 degree view ICGA and UWF-ICGA images. Additionally, the multi-dimensional choroidal vascular parameters were significantly associated with various chorioretinal diseases. Our study not only demonstrated the feasibility of the HITL strategy in improving segmentation performance with reduced manual labeling, but also innovatively introduced several risk predictors for choroidal abnormalities.
Abstract:Recent years have witnessed the prosperity of knowledge graph based recommendation system (KGRS), which enriches the representation of users, items, and entities by structural knowledge with striking improvement. Nevertheless, its unaffordable computational cost still limits researchers from exploring more sophisticated models. We observe that the bottleneck for training efficiency arises from the knowledge graph, which is plagued by the well-known issue of knowledge explosion. Recently, some works have attempted to slim the inflated KG via summarization techniques. However, these summarized nodes may ignore the collaborative signals and deviate from the facts that nodes in knowledge graph represent symbolic abstractions of entities from the real-world. To this end, in this paper, we propose a novel approach called KGTrimmer for knowledge graph pruning tailored for recommendation, to remove the unessential nodes while minimizing performance degradation. Specifically, we design an importance evaluator from a dual-view perspective. For the collective view, we embrace the idea of collective intelligence by extracting community consensus based on abundant collaborative signals, i.e. nodes are considered important if they attract attention of numerous users. For the holistic view, we learn a global mask to identify the valueless nodes from their inherent properties or overall popularity. Next, we build an end-to-end importance-aware graph neural network, which injects filtered knowledge to enhance the distillation of valuable user-item collaborative signals. Ultimately, we generate a pruned knowledge graph with lightweight, stable, and robust properties to facilitate the following-up recommendation task. Extensive experiments are conducted on three publicly available datasets to prove the effectiveness and generalization ability of KGTrimmer.
Abstract:Last year has witnessed the considerable interest of Large Language Models (LLMs) for their potential applications in recommender systems, which may mitigate the persistent issue of data sparsity. Though large efforts have been made for user-item graph augmentation with better graph-based recommendation performance, they may fail to deal with the dynamic graph recommendation task, which involves both structural and temporal graph dynamics with inherent complexity in processing time-evolving data. To bridge this gap, in this paper, we propose a novel framework, called DynLLM, to deal with the dynamic graph recommendation task with LLMs. Specifically, DynLLM harnesses the power of LLMs to generate multi-faceted user profiles based on the rich textual features of historical purchase records, including crowd segments, personal interests, preferred categories, and favored brands, which in turn supplement and enrich the underlying relationships between users and items. Along this line, to fuse the multi-faceted profiles with temporal graph embedding, we engage LLMs to derive corresponding profile embeddings, and further employ a distilled attention mechanism to refine the LLM-generated profile embeddings for alleviating noisy signals, while also assessing and adjusting the relevance of each distilled facet embedding for seamless integration with temporal graph embedding from continuous time dynamic graphs (CTDGs). Extensive experiments on two real e-commerce datasets have validated the superior improvements of DynLLM over a wide range of state-of-the-art baseline methods.
Abstract:Artificial intelligence (AI) has gained significant attention in healthcare consultation due to its potential to improve clinical workflow and enhance medical communication. However, owing to the complex nature of medical information, large language models (LLM) trained with general world knowledge might not possess the capability to tackle medical-related tasks at an expert level. Here, we introduce EyeGPT, a specialized LLM designed specifically for ophthalmology, using three optimization strategies including role-playing, finetuning, and retrieval-augmented generation. In particular, we proposed a comprehensive evaluation framework that encompasses a diverse dataset, covering various subspecialties of ophthalmology, different users, and diverse inquiry intents. Moreover, we considered multiple evaluation metrics, including accuracy, understandability, trustworthiness, empathy, and the proportion of hallucinations. By assessing the performance of different EyeGPT variants, we identify the most effective one, which exhibits comparable levels of understandability, trustworthiness, and empathy to human ophthalmologists (all Ps>0.05). Overall, ur study provides valuable insights for future research, facilitating comprehensive comparisons and evaluations of different strategies for developing specialized LLMs in ophthalmology. The potential benefits include enhancing the patient experience in eye care and optimizing ophthalmologists' services.
Abstract:We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.
Abstract:Automatic labeling of coronary arteries is an essential task in the practical diagnosis process of cardiovascular diseases. For experienced radiologists, the anatomically predetermined connections are important for labeling the artery segments accurately, while this prior knowledge is barely explored in previous studies. In this paper, we present a new framework called TopoLab which incorporates the anatomical connections into the network design explicitly. Specifically, the strategies of intra-segment feature aggregation and inter-segment feature interaction are introduced for hierarchical segment feature extraction. Moreover, we propose the anatomy-aware connection classifier to enable classification for each connected segment pair, which effectively exploits the prior topology among the arteries with different categories. To validate the effectiveness of our method, we contribute high-quality annotations of artery labeling to the public orCaScore dataset. The experimental results on both the orCaScore dataset and an in-house dataset show that our TopoLab has achieved state-of-the-art performance.
Abstract:During ultrasonic scanning processes, real-time lesion detection can assist radiologists in accurate cancer diagnosis. However, this essential task remains challenging and underexplored. General-purpose real-time object detection models can mistakenly report obvious false positives (FPs) when applied to ultrasound videos, potentially misleading junior radiologists. One key issue is their failure to utilize negative symptoms in previous frames, denoted as negative temporal contexts (NTC). To address this issue, we propose to extract contexts from previous frames, including NTC, with the guidance of inverse optical flow. By aggregating extracted contexts, we endow the model with the ability to suppress FPs by leveraging NTC. We call the resulting model UltraDet. The proposed UltraDet demonstrates significant improvement over previous state-of-the-arts and achieves real-time inference speed. To facilitate future research, we will release the code, checkpoints, and high-quality labels of the CVA-BUS dataset used in our experiments.