Abstract:Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects. With the rise of modern online learning platforms, particularly massive open online courses (MOOCs), an abundance of interaction data has greatly advanced the development of the KT technology. Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions and thus fails to model the true knowledge state in learning process. In light of this, we propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs stochastic distribution embeddings to represent the uncertainty in student interactions, with a Wasserstein self-attention mechanism designed to capture the transition of state distribution in student learning behaviors. Additionally, we introduce the aleatory uncertainty-aware contrastive learning loss, which strengthens the model's robustness towards different types of uncertainties. Extensive experiments on six real-world datasets demonstrate that UKT not only significantly surpasses existing deep learning-based models in KT prediction, but also shows unique advantages in handling the uncertainty of student interactions.
Abstract:Multimodal foundation models (MFMs) have revolutionized sequential recommender systems through advanced representation learning. While Parameter-efficient Fine-tuning (PEFT) is commonly used to adapt these models, studies often prioritize parameter efficiency, neglecting GPU memory and training speed. To address this, we introduced the IISAN framework, significantly enhancing efficiency. However, IISAN was limited to symmetrical MFMs and identical text and image encoders, preventing the use of state-of-the-art Large Language Models. To overcome this, we developed IISAN-Versa, a versatile plug-and-play architecture compatible with both symmetrical and asymmetrical MFMs. IISAN-Versa employs a Decoupled PEFT structure and utilizes both intra- and inter-modal adaptation. It effectively handles asymmetry through a simple yet effective combination of group layer-dropping and dimension transformation alignment. Our research demonstrates that IISAN-Versa effectively adapts large text encoders, and we further identify a scaling effect where larger encoders generally perform better. IISAN-Versa also demonstrates strong versatility in our defined multimodal scenarios, which include raw titles and captions generated from images and videos. Additionally, IISAN-Versa achieved state-of-the-art performance on the Microlens public benchmark. We will release our code and datasets to support future research.
Abstract:Sequential Recommendation (SR) aims to predict future user-item interactions based on historical interactions. While many SR approaches concentrate on user IDs and item IDs, the human perception of the world through multi-modal signals, like text and images, has inspired researchers to delve into constructing SR from multi-modal information without using IDs. However, the complexity of multi-modal learning manifests in diverse feature extractors, fusion methods, and pre-trained models. Consequently, designing a simple and universal \textbf{M}ulti-\textbf{M}odal \textbf{S}equential \textbf{R}ecommendation (\textbf{MMSR}) framework remains a formidable challenge. We systematically summarize the existing multi-modal related SR methods and distill the essence into four core components: visual encoder, text encoder, multimodal fusion module, and sequential architecture. Along these dimensions, we dissect the model designs, and answer the following sub-questions: First, we explore how to construct MMSR from scratch, ensuring its performance either on par with or exceeds existing SR methods without complex techniques. Second, we examine if MMSR can benefit from existing multi-modal pre-training paradigms. Third, we assess MMSR's capability in tackling common challenges like cold start and domain transferring. Our experiment results across four real-world recommendation scenarios demonstrate the great potential ID-agnostic multi-modal sequential recommendation. Our framework can be found at: https://github.com/MMSR23/MMSR.
Abstract:ID-based Recommender Systems (RecSys), where each item is assigned a unique identifier and subsequently converted into an embedding vector, have dominated the designing of RecSys. Though prevalent, such ID-based paradigm is not suitable for developing transferable RecSys and is also susceptible to the cold-start issue. In this paper, we unleash the boundaries of the ID-based paradigm and propose a Pure Multi-Modality based Recommender system (PMMRec), which relies solely on the multi-modal contents of the items (e.g., texts and images) and learns transition patterns general enough to transfer across domains and platforms. Specifically, we design a plug-and-play framework architecture consisting of multi-modal item encoders, a fusion module, and a user encoder. To align the cross-modal item representations, we propose a novel next-item enhanced cross-modal contrastive learning objective, which is equipped with both inter- and intra-modality negative samples and explicitly incorporates the transition patterns of user behaviors into the item encoders. To ensure the robustness of user representations, we propose a novel noised item detection objective and a robustness-aware contrastive learning objective, which work together to denoise user sequences in a self-supervised manner. PMMRec is designed to be loosely coupled, so after being pre-trained on the source data, each component can be transferred alone, or in conjunction with other components, allowing PMMRec to achieve versatility under both multi-modality and single-modality transfer learning settings. Extensive experiments on 4 sources and 10 target datasets demonstrate that PMMRec surpasses the state-of-the-art recommenders in both recommendation performance and transferability. Our code and dataset is available at: https://github.com/ICDE24/PMMRec.
Abstract:Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec.
Abstract:Micro-videos have recently gained immense popularity, sparking critical research in micro-video recommendation with significant implications for the entertainment, advertising, and e-commerce industries. However, the lack of large-scale public micro-video datasets poses a major challenge for developing effective recommender systems. To address this challenge, we introduce a very large micro-video recommendation dataset, named "MicroLens", consisting of one billion user-item interaction behaviors, 34 million users, and one million micro-videos. This dataset also contains various raw modality information about videos, including titles, cover images, audio, and full-length videos. MicroLens serves as a benchmark for content-driven micro-video recommendation, enabling researchers to utilize various modalities of video information for recommendation, rather than relying solely on item IDs or off-the-shelf video features extracted from a pre-trained network. Our benchmarking of multiple recommender models and video encoders on MicroLens has yielded valuable insights into the performance of micro-video recommendation. We believe that this dataset will not only benefit the recommender system community but also promote the development of the video understanding field. Our datasets and code are available at https://github.com/westlake-repl/MicroLens.
Abstract:Learning a recommender system model from an item's raw modality features (such as image, text, audio, etc.), called MoRec, has attracted growing interest recently. One key advantage of MoRec is that it can easily benefit from advances in other fields, such as natural language processing (NLP) and computer vision (CV). Moreover, it naturally supports transfer learning across different systems through modality features, known as transferable recommender systems, or TransRec. However, so far, TransRec has made little progress, compared to groundbreaking foundation models in the fields of NLP and CV. The lack of large-scale, high-quality recommendation datasets poses a major obstacle. To this end, we introduce NineRec, a TransRec dataset suite that includes a large-scale source domain recommendation dataset and nine diverse target domain recommendation datasets. Each item in NineRec is represented by a text description and a high-resolution cover image. With NineRec, we can implement TransRec models in an end-to-end training manner instead of using pre-extracted invariant features. We conduct a benchmark study and empirical analysis of TransRec using NineRec, and our findings provide several valuable insights. To support further research, we make our code, datasets, benchmarks, and leaderboards publicly available at https://github.com/westlake-repl/NineRec.
Abstract:Recommender systems (RS) have achieved significant success by leveraging explicit identification (ID) features. However, the full potential of content features, especially the pure image pixel features, remains relatively unexplored. The limited availability of large, diverse, and content-driven image recommendation datasets has hindered the use of raw images as item representations. In this regard, we present PixelRec, a massive image-centric recommendation dataset that includes approximately 200 million user-image interactions, 30 million users, and 400,000 high-quality cover images. By providing direct access to raw image pixels, PixelRec enables recommendation models to learn item representation directly from them. To demonstrate its utility, we begin by presenting the results of several classical pure ID-based baseline models, termed IDNet, trained on PixelRec. Then, to show the effectiveness of the dataset's image features, we substitute the itemID embeddings (from IDNet) with a powerful vision encoder that represents items using their raw image pixels. This new model is dubbed PixelNet.Our findings indicate that even in standard, non-cold start recommendation settings where IDNet is recognized as highly effective, PixelNet can already perform equally well or even better than IDNet. Moreover, PixelNet has several other notable advantages over IDNet, such as being more effective in cold-start and cross-domain recommendation scenarios. These results underscore the importance of visual features in PixelRec. We believe that PixelRec can serve as a critical resource and testing ground for research on recommendation models that emphasize image pixel content. The dataset, code, and leaderboard will be available at https://github.com/westlake-repl/PixelRec.
Abstract:Multi-modal recommendation systems, which integrate diverse types of information, have gained widespread attention in recent years. However, compared to traditional collaborative filtering-based multi-modal recommendation systems, research on multi-modal sequential recommendation is still in its nascent stages. Unlike traditional sequential recommendation models that solely rely on item identifier (ID) information and focus on network structure design, multi-modal recommendation models need to emphasize item representation learning and the fusion of heterogeneous data sources. This paper investigates the impact of item representation learning on downstream recommendation tasks and examines the disparities in information fusion at different stages. Empirical experiments are conducted to demonstrate the need to design a framework suitable for collaborative learning and fusion of diverse information. Based on this, we propose a new model-agnostic framework for multi-modal sequential recommendation tasks, called Online Distillation-enhanced Multi-modal Transformer (ODMT), to enhance feature interaction and mutual learning among multi-source input (ID, text, and image), while avoiding conflicts among different features during training, thereby improving recommendation accuracy. To be specific, we first introduce an ID-aware Multi-modal Transformer module in the item representation learning stage to facilitate information interaction among different features. Secondly, we employ an online distillation training strategy in the prediction optimization stage to make multi-source data learn from each other and improve prediction robustness. Experimental results on a stream media recommendation dataset and three e-commerce recommendation datasets demonstrate the effectiveness of the proposed two modules, which is approximately 10% improvement in performance compared to baseline models.
Abstract:Recommendation models that utilize unique identities (IDs) to represent distinct users and items have been state-of-the-art (SOTA) and dominated the recommender systems (RS) literature for over a decade. Meanwhile, the pre-trained modality encoders, such as BERT and ViT, have become increasingly powerful in modeling the raw modality features of an item, such as text and images. Given this, a natural question arises: can a purely modality-based recommendation model (MoRec) outperforms or matches a pure ID-based model (IDRec) by replacing the itemID embedding with a SOTA modality encoder? In fact, this question was answered ten years ago when IDRec beats MoRec by a strong margin in both recommendation accuracy and efficiency. We aim to revisit this `old' question and systematically study MoRec from several aspects. Specifically, we study several sub-questions: (i) which recommendation paradigm, MoRec or IDRec, performs better in practical scenarios, especially in the general setting and warm item scenarios where IDRec has a strong advantage? does this hold for items with different modality features? (ii) can the latest technical advances from other communities (i.e., natural language processing and computer vision) translate into accuracy improvement for MoRec? (iii) how to effectively utilize item modality representation, can we use it directly or do we have to adjust it with new data? (iv) are there some key challenges for MoRec to be solved in practical applications? To answer them, we conduct rigorous experiments for item recommendations with two popular modalities, i.e., text and vision. We provide the first empirical evidence that MoRec is already comparable to its IDRec counterpart with an expensive end-to-end training method, even for warm item recommendation. Our results potentially imply that the dominance of IDRec in the RS field may be greatly challenged in the future.