Abstract:Community detection plays a pivotal role in uncovering closely connected subgraphs, aiding various real-world applications such as recommendation systems and anomaly detection. With the surge of rich information available for entities in real-world networks, the community detection problem in attributed networks has attracted widespread attention. While previous research has effectively leveraged network topology and attribute information for attributed community detection, these methods overlook two critical issues: (i) the semantic similarity between node attributes within the community, and (ii) the inherent mesoscopic structure, which differs from the pairwise connections of the micro-structure. To address these limitations, we propose HACD, a novel attributed community detection model based on heterogeneous graph attention networks. HACD treats node attributes as another type of node, constructs attributed networks into heterogeneous graph structures and employs attribute-level attention mechanisms to capture semantic similarity. Furthermore, HACD introduces a community membership function to explore mesoscopic community structures, enhancing the robustness of detected communities. Extensive experiments demonstrate the effectiveness and efficiency of HACD, outperforming state-of-the-art methods in attributed community detection tasks. Our code is publicly available at https://github.com/Anniran1/HACD1-wsdm.
Abstract:Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the walking pattern since the sparse boundary lacks dense spatial-temporal information, which is suitable to be represented with dense texture. To enhance the sensitivity to the walking pattern while maintaining the robustness of recognition, we present a Complementary Learning with neural Architecture Search (CLASH) framework, consisting of walking pattern sensitive gait descriptor named dense spatial-temporal field (DSTF) and neural architecture search based complementary learning (NCL). Specifically, DSTF transforms the representation from the sparse binary boundary into the dense distance-based texture, which is sensitive to the walking pattern at the pixel level. Further, NCL presents a task-specific search space for complementary learning, which mutually complements the sensitivity of DSTF and the robustness of the silhouette to represent the walking pattern effectively. Extensive experiments demonstrate the effectiveness of the proposed methods under both in-the-lab and in-the-wild scenarios. On CASIA-B, we achieve rank-1 accuracy of 98.8%, 96.5%, and 89.3% under three conditions. On OU-MVLP, we achieve rank-1 accuracy of 91.9%. Under the latest in-the-wild datasets, we outperform the latest silhouette-based methods by 16.3% and 19.7% on Gait3D and GREW, respectively.
Abstract:As assembly tasks grow in complexity, collaboration among multiple robots becomes essential for task completion. However, centralized task planning has become inadequate for adapting to the increasing intelligence and versatility of robots, along with rising customized orders. There is a need for efficient and automated planning mechanisms capable of coordinating diverse robots for collaborative assembly. To this end, we propose a Stackelberg game-theoretic learning approach. By leveraging Stackelberg games, we characterize robot collaboration through leader-follower interaction to enhance strategy seeking and ensure task completion. To enhance applicability across tasks, we introduce a novel multi-agent learning algorithm: Stackelberg double deep Q-learning, which facilitates automated assembly strategy seeking and multi-robot coordination. Our approach is validated through simulated assembly tasks. Comparison with three alternative multi-agent learning methods shows that our approach achieves the shortest task completion time for tasks. Furthermore, our approach exhibits robustness against both accidental and deliberate environmental perturbations.
Abstract:Shared control allows the human driver to collaborate with an assistive driving system while retaining the ability to make decisions and take control if necessary. However, human-vehicle teaming and planning are challenging due to environmental uncertainties, the human's bounded rationality, and the variability in human behaviors. An effective collaboration plan needs to learn and adapt to these uncertainties. To this end, we develop a Stackelberg meta-learning algorithm to create automated learning-based planning for shared control. The Stackelberg games are used to capture the leader-follower structure in the asymmetric interactions between the human driver and the assistive driving system. The meta-learning algorithm generates a common behavioral model, which is capable of fast adaptation using a small amount of driving data to assist optimal decision-making. We use a case study of an obstacle avoidance driving scenario to corroborate that the adapted human behavioral model can successfully assist the human driver in reaching the target destination. Besides, it saves driving time compared with a driver-only scheme and is also robust to drivers' bounded rationality and errors.
Abstract:Robot allocation plays an essential role in facilitating robotic service provision across various domains. Yet the increasing number of users and the uncertainties regarding the users' true service requirements have posed challenges for the service provider in effectively allocating service robots to users to meet their needs. In this work, we first propose a contract-based approach to enable incentive-compatible service selection so that the service provider can effectively reduce the user's service uncertainties for precise service provision. Then, we develop a distributed allocation algorithm that incorporates robot dynamics and collision avoidance to allocate service robots and address scalability concerns associated with increasing numbers of service robots and users. We conduct simulations in eight scenarios to validate our approach. Comparative analysis against the robust allocation paradigm and two alternative uncertainty reduction strategies demonstrates that our approach achieves better allocation efficiency and accuracy.
Abstract:Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec.
Abstract:Guided trajectory planning involves a leader robotic agent strategically directing a follower robotic agent to collaboratively reach a designated destination. However, this task becomes notably challenging when the leader lacks complete knowledge of the follower's decision-making model. There is a need for learning-based methods to effectively design the cooperative plan. To this end, we develop a Stackelberg game-theoretic approach based on Koopman operator to address the challenge. We first formulate the guided trajectory planning problem through the lens of a dynamic Stackelberg game. We then leverage Koopman operator theory to acquire a learning-based linear system model that approximates the follower's feedback dynamics. Based on this learned model, the leader devises a collision-free trajectory to guide the follower, employing receding horizon planning. We use simulations to elaborate the effectiveness of our approach in generating learning models that accurately predict the follower's multi-step behavior when compared to alternative learning techniques. Moreover, our approach successfully accomplishes the guidance task and notably reduces the leader's planning time to nearly half when contrasted with the model-based baseline method.
Abstract:Negative sampling is essential for implicit-feedback-based collaborative filtering, which is used to constitute negative signals from massive unlabeled data to guide supervised learning. The state-of-the-art idea is to utilize hard negative samples that carry more useful information to form a better decision boundary. To balance efficiency and effectiveness, the vast majority of existing methods follow the two-pass approach, in which the first pass samples a fixed number of unobserved items by a simple static distribution and then the second pass selects the final negative items using a more sophisticated negative sampling strategy. However, selecting negative samples from the original items is inherently restricted, and thus may not be able to contrast positive samples well. In this paper, we confirm this observation via experiments and introduce two limitations of existing solutions: ambiguous trap and information discrimination. Our response to such limitations is to introduce augmented negative samples. This direction renders a substantial technical challenge because constructing unconstrained negative samples may introduce excessive noise that distorts the decision boundary. To this end, we introduce a novel generic augmented negative sampling paradigm and provide a concrete instantiation. First, we disentangle hard and easy factors of negative items. Next, we generate new candidate negative samples by augmenting only the easy factors in a regulated manner: the direction and magnitude of the augmentation are carefully calibrated. Finally, we design an advanced negative sampling strategy to identify the final augmented negative samples, which considers not only the score function used in existing methods but also a new metric called augmentation gain. Extensive experiments on real-world datasets demonstrate that our method significantly outperforms state-of-the-art baselines.
Abstract:Gait recognition aims at identifying the pedestrians at a long distance by their biometric gait patterns. It is inherently challenging due to the various covariates and the properties of silhouettes (textureless and colorless), which result in two kinds of pair-wise hard samples: the same pedestrian could have distinct silhouettes (intra-class diversity) and different pedestrians could have similar silhouettes (inter-class similarity). In this work, we propose to solve the hard sample issue with a Memory-augmented Progressive Learning network (GaitMPL), including Dynamic Reweighting Progressive Learning module (DRPL) and Global Structure-Aligned Memory bank (GSAM). Specifically, DRPL reduces the learning difficulty of hard samples by easy-to-hard progressive learning. GSAM further augments DRPL with a structure-aligned memory mechanism, which maintains and models the feature distribution of each ID. Experiments on two commonly used datasets, CASIA-B and OU-MVLP, demonstrate the effectiveness of GaitMPL. On CASIA-B, we achieve the state-of-the-art performance, i.e., 88.0% on the most challenging condition (Clothing) and 93.3% on the average condition, which outperforms the other methods by at least 3.8% and 1.4%, respectively.
Abstract:Guided cooperation is a common task in many multi-agent teaming applications. The planning of the cooperation is difficult when the leader robot has incomplete information about the follower, and there is a need to learn, customize, and adapt the cooperation plan online. To this end, we develop a learning-based Stackelberg game-theoretic framework to address this challenge to achieve optimal trajectory planning for heterogeneous robots. We first formulate the guided trajectory planning problem as a dynamic Stackelberg game and design the cooperation plans using open-loop Stackelberg equilibria. We leverage meta-learning to deal with the unknown follower in the game and propose a Stackelberg meta-learning framework to create online adaptive trajectory guidance plans, where the leader robot learns a meta-best-response model from a prescribed set of followers offline and then fast adapts to a specific online trajectory guidance task using limited learning data. We use simulations in three different scenarios to elaborate on the effectiveness of our framework. Comparison with other learning approaches and no guidance cases show that our framework provides a more time- and data-efficient planning method in trajectory guidance tasks.