Abstract:Fine-grained and contact-rich manipulation remain challenging for robots, largely due to the underutilization of tactile feedback. To address this, we introduce TouchGuide, a novel cross-policy visuo-tactile fusion paradigm that fuses modalities within a low-dimensional action space. Specifically, TouchGuide operates in two stages to guide a pre-trained diffusion or flow-matching visuomotor policy at inference time. First, the policy produces a coarse, visually-plausible action using only visual inputs during early sampling. Second, a task-specific Contact Physical Model (CPM) provides tactile guidance to steer and refine the action, ensuring it aligns with realistic physical contact conditions. Trained through contrastive learning on limited expert demonstrations, the CPM provides a tactile-informed feasibility score to steer the sampling process toward refined actions that satisfy physical contact constraints. Furthermore, to facilitate TouchGuide training with high-quality and cost-effective data, we introduce TacUMI, a data collection system. TacUMI achieves a favorable trade-off between precision and affordability; by leveraging rigid fingertips, it obtains direct tactile feedback, thereby enabling the collection of reliable tactile data. Extensive experiments on five challenging contact-rich tasks, such as shoe lacing and chip handover, show that TouchGuide consistently and significantly outperforms state-of-the-art visuo-tactile policies.
Abstract:Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
Abstract:Recent years have witnessed increasing interest in extending large language models into agentic systems. While the effectiveness of agents has continued to improve, efficiency, which is crucial for real-world deployment, has often been overlooked. This paper therefore investigates efficiency from three core components of agents: memory, tool learning, and planning, considering costs such as latency, tokens, steps, etc. Aimed at conducting comprehensive research addressing the efficiency of the agentic system itself, we review a broad range of recent approaches that differ in implementation yet frequently converge on shared high-level principles including but not limited to bounding context via compression and management, designing reinforcement learning rewards to minimize tool invocation, and employing controlled search mechanisms to enhance efficiency, which we discuss in detail. Accordingly, we characterize efficiency in two complementary ways: comparing effectiveness under a fixed cost budget, and comparing cost at a comparable level of effectiveness. This trade-off can also be viewed through the Pareto frontier between effectiveness and cost. From this perspective, we also examine efficiency oriented benchmarks by summarizing evaluation protocols for these components and consolidating commonly reported efficiency metrics from both benchmark and methodological studies. Moreover, we discuss the key challenges and future directions, with the goal of providing promising insights.
Abstract:Serendipity plays a pivotal role in enhancing user satisfaction within recommender systems, yet its evaluation poses significant challenges due to its inherently subjective nature and conceptual ambiguity. Current algorithmic approaches predominantly rely on proxy metrics for indirect assessment, often failing to align with real user perceptions, thus creating a gap. With large language models (LLMs) increasingly revolutionizing evaluation methodologies across various human annotation tasks, we are inspired to explore a core research proposition: Can LLMs effectively simulate human users for serendipity evaluation? To address this question, we conduct a meta-evaluation on two datasets derived from real user studies in the e-commerce and movie domains, focusing on three key aspects: the accuracy of LLMs compared to conventional proxy metrics, the influence of auxiliary data on LLM comprehension, and the efficacy of recently popular multi-LLM techniques. Our findings indicate that even the simplest zero-shot LLMs achieve parity with, or surpass, the performance of conventional metrics. Furthermore, multi-LLM techniques and the incorporation of auxiliary data further enhance alignment with human perspectives. Based on our findings, the optimal evaluation by LLMs yields a Pearson correlation coefficient of 21.5\% when compared to the results of the user study. This research implies that LLMs may serve as potentially accurate and cost-effective evaluators, introducing a new paradigm for serendipity evaluation in recommender systems.
Abstract:Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
Abstract:Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
Abstract:In the Industrial Internet of Things (IoT), a large amount of data will be generated every day. Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models, thus the federated learning, a distributed machine learning paradigm that protects data privacy, has been widely used in IoT. However, in practical federated learning, the data distributions usually have large differences across devices, and the heterogeneity of data will deteriorate the performance of the model. Moreover, federated learning in IoT usually has a large number of devices involved in training, and the limited communication resource of cloud servers become a bottleneck for training. To address the above issues, in this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework, which can mitigate the impact of data heterogeneity, and can be deployed at lage scale in IoT. To address the effect of data heterogeneity, we use an incremental subgradient optimization algorithm in each ring cluster to improve the generalization ability of the ring cluster models. Our extensive experiments show that our approach can effectively mitigate the impact of data heterogeneity and alleviate the communication bottleneck in cloud servers.




Abstract:Anomaly detection has wide applications in machine intelligence but is still a difficult unsolved problem. Major challenges include the rarity of labeled anomalies and it is a class highly imbalanced problem. Traditional unsupervised anomaly detectors are suboptimal while supervised models can easily make biased predictions towards normal data. In this paper, we present a new supervised anomaly detector through introducing the novel Ensemble Active Learning Generative Adversarial Network (EAL-GAN). EAL-GAN is a conditional GAN having a unique one generator vs. multiple discriminators architecture where anomaly detection is implemented by an auxiliary classifier of the discriminator. In addition to using the conditional GAN to generate class balanced supplementary training data, an innovative ensemble learning loss function ensuring each discriminator makes up for the deficiencies of the others is designed to overcome the class imbalanced problem, and an active learning algorithm is introduced to significantly reduce the cost of labeling real-world data. We present extensive experimental results to demonstrate that the new anomaly detector consistently outperforms a variety of SOTA methods by significant margins. The codes are available on Github.