Abstract:This chapter explores the symbiotic relationship between Artificial Intelligence (AI) and trust in networked systems, focusing on how these two elements reinforce each other in strategic cybersecurity contexts. AI's capabilities in data processing, learning, and real-time response offer unprecedented support for managing trust in dynamic, complex networks. However, the successful integration of AI also hinges on the trustworthiness of AI systems themselves. Using a game-theoretic framework, this chapter presents approaches to trust evaluation, the strategic role of AI in cybersecurity, and governance frameworks that ensure responsible AI deployment. We investigate how trust, when dynamically managed through AI, can form a resilient security ecosystem. By examining trust as both an AI output and an AI requirement, this chapter sets the foundation for a positive feedback loop where AI enhances network security and the trust placed in AI systems fosters their adoption.
Abstract:The integration of AI into modern critical infrastructure systems, such as healthcare, has introduced new vulnerabilities that can significantly impact workflow, efficiency, and safety. Additionally, the increased connectivity has made traditional human-driven penetration testing insufficient for assessing risks and developing remediation strategies. Consequently, there is a pressing need for a distributed, adaptive, and efficient automated penetration testing framework that not only identifies vulnerabilities but also provides countermeasures to enhance security posture. This work presents ADAPT, a game-theoretic and neuro-symbolic framework for automated distributed adaptive penetration testing, specifically designed to address the unique cybersecurity challenges of AI-enabled healthcare infrastructure networks. We use a healthcare system case study to illustrate the methodologies within ADAPT. The proposed solution enables a learning-based risk assessment. Numerical experiments are used to demonstrate effective countermeasures against various tactical techniques employed by adversarial AI.
Abstract:Text detoxification, a variant of style transfer tasks, finds useful applications in online social media. This work presents a fine-tuning method that only uses non-parallel data to turn large language models (LLM) into a detoxification rewritter. We model the fine-tuning process as a Stackelberg game between an LLM (leader) and a toxicity screener (follower), which is a binary style classifier (toxic or non-toxic). The LLM aims to align its preference according to the screener and generate paraphases passing the screening. The primary challenge of non-parallel data fine-tuning is incomplete preference. In the case of unsuccessful paraphrases, the classifier cannot establish a preference between the input and paraphrase, as they belong to the same toxic style. Hence, preference-alignment fine-tuning methods, such as direct preference optimization (DPO), no longer apply. To address the challenge of incomplete preference, we propose Stackelberg response optimization (SRO), adapted from DPO, to enable the LLM to learn from the follower's response. The gist is that SRO decreases the likelihood of generating the paraphrase if it fails the follower's screening while performing DPO on the pair of the toxic input and its paraphrase when the latter passes the screening. Experiments indicate that the SRO-fine-tunned LLM achieves satisfying performance comparable to state-of-the-art models regarding style accuracy, content similarity, and fluency. The overall detoxification performance surpasses other computing methods and matches the human reference. Additional empirical evidence suggests that SRO is sensitive to the screener's feedback, and a slight perturbation leads to a significant performance drop. We release the code and LLM models at \url{https://github.com/XXXinhong/Detoxification_LLM}.
Abstract:Federated learning (FL) is susceptible to a range of security threats. Although various defense mechanisms have been proposed, they are typically non-adaptive and tailored to specific types of attacks, leaving them insufficient in the face of multiple uncertain, unknown, and adaptive attacks employing diverse strategies. This work formulates adversarial federated learning under a mixture of various attacks as a Bayesian Stackelberg Markov game, based on which we propose the meta-Stackelberg defense composed of pre-training and online adaptation. {The gist is to simulate strong attack behavior using reinforcement learning (RL-based attacks) in pre-training and then design meta-RL-based defense to combat diverse and adaptive attacks.} We develop an efficient meta-learning approach to solve the game, leading to a robust and adaptive FL defense. Theoretically, our meta-learning algorithm, meta-Stackelberg learning, provably converges to the first-order $\varepsilon$-meta-equilibrium point in $O(\varepsilon^{-2})$ gradient iterations with $O(\varepsilon^{-4})$ samples per iteration. Experiments show that our meta-Stackelberg framework performs superbly against strong model poisoning and backdoor attacks of uncertain and unknown types.
Abstract:Penetration testing is an essential means of proactive defense in the face of escalating cybersecurity incidents. Traditional manual penetration testing methods are time-consuming, resource-intensive, and prone to human errors. Current trends in automated penetration testing are also impractical, facing significant challenges such as the curse of dimensionality, scalability issues, and lack of adaptability to network changes. To address these issues, we propose MEGA-PT, a meta-game penetration testing framework, featuring micro tactic games for node-level local interactions and a macro strategy process for network-wide attack chains. The micro- and macro-level modeling enables distributed, adaptive, collaborative, and fast penetration testing. MEGA-PT offers agile solutions for various security schemes, including optimal local penetration plans, purple teaming solutions, and risk assessment, providing fundamental principles to guide future automated penetration testing. Our experiments demonstrate the effectiveness and agility of our model by providing improved defense strategies and adaptability to changes at both local and network levels.
Abstract:In urban traffic management, the primary challenge of dynamically and efficiently monitoring traffic conditions is compounded by the insufficient utilization of thousands of surveillance cameras along the intelligent transportation system. This paper introduces the multi-level Traffic-responsive Tilt Camera surveillance system (TTC-X), a novel framework designed for dynamic and efficient monitoring and management of traffic in urban networks. By leveraging widely deployed pan-tilt-cameras (PTCs), TTC-X overcomes the limitations of a fixed field of view in traditional surveillance systems by providing mobilized and 360-degree coverage. The innovation of TTC-X lies in the integration of advanced machine learning modules, including a detector-predictor-controller structure, with a novel Predictive Correlated Online Learning (PiCOL) methodology and the Spatial-Temporal Graph Predictor (STGP) for real-time traffic estimation and PTC control. The TTC-X is tested and evaluated under three experimental scenarios (e.g., maximum traffic flow capture, dynamic route planning, traffic state estimation) based on a simulation environment calibrated using real-world traffic data in Brooklyn, New York. The experimental results showed that TTC-X captured over 60\% total number of vehicles at the network level, dynamically adjusted its route recommendation in reaction to unexpected full-lane closure events, and reconstructed link-level traffic states with best MAE less than 1.25 vehicle/hour. Demonstrating scalability, cost-efficiency, and adaptability, TTC-X emerges as a powerful solution for urban traffic management in both cyber-physical and real-world environments.
Abstract:Meta-learning has been proposed as a promising machine learning topic in recent years, with important applications to image classification, robotics, computer games, and control systems. In this paper, we study the problem of using meta-learning to deal with uncertainty and heterogeneity in ergodic linear quadratic regulators. We integrate the zeroth-order optimization technique with a typical meta-learning method, proposing an algorithm that omits the estimation of policy Hessian, which applies to tasks of learning a set of heterogeneous but similar linear dynamic systems. The induced meta-objective function inherits important properties of the original cost function when the set of linear dynamic systems are meta-learnable, allowing the algorithm to optimize over a learnable landscape without projection onto the feasible set. We provide a convergence result for the exact gradient descent process by analyzing the boundedness and smoothness of the gradient for the meta-objective, which justify the proposed algorithm with gradient estimation error being small. We also provide a numerical example to corroborate this perspective.
Abstract:The pervasive integration of Artificial Intelligence (AI) has introduced complex challenges in the responsibility and accountability in the event of incidents involving AI-enabled systems. The interconnectivity of these systems, ethical concerns of AI-induced incidents, coupled with uncertainties in AI technology and the absence of corresponding regulations, have made traditional responsibility attribution challenging. To this end, this work proposes a Computational Reflective Equilibrium (CRE) approach to establish a coherent and ethically acceptable responsibility attribution framework for all stakeholders. The computational approach provides a structured analysis that overcomes the limitations of conceptual approaches in dealing with dynamic and multifaceted scenarios, showcasing the framework's explainability, coherence, and adaptivity properties in the responsibility attribution process. We examine the pivotal role of the initial activation level associated with claims in equilibrium computation. Using an AI-assisted medical decision-support system as a case study, we illustrate how different initializations lead to diverse responsibility distributions. The framework offers valuable insights into accountability in AI-induced incidents, facilitating the development of a sustainable and resilient system through continuous monitoring, revision, and reflection.
Abstract:As assembly tasks grow in complexity, collaboration among multiple robots becomes essential for task completion. However, centralized task planning has become inadequate for adapting to the increasing intelligence and versatility of robots, along with rising customized orders. There is a need for efficient and automated planning mechanisms capable of coordinating diverse robots for collaborative assembly. To this end, we propose a Stackelberg game-theoretic learning approach. By leveraging Stackelberg games, we characterize robot collaboration through leader-follower interaction to enhance strategy seeking and ensure task completion. To enhance applicability across tasks, we introduce a novel multi-agent learning algorithm: Stackelberg double deep Q-learning, which facilitates automated assembly strategy seeking and multi-robot coordination. Our approach is validated through simulated assembly tasks. Comparison with three alternative multi-agent learning methods shows that our approach achieves the shortest task completion time for tasks. Furthermore, our approach exhibits robustness against both accidental and deliberate environmental perturbations.
Abstract:Robot allocation plays an essential role in facilitating robotic service provision across various domains. Yet the increasing number of users and the uncertainties regarding the users' true service requirements have posed challenges for the service provider in effectively allocating service robots to users to meet their needs. In this work, we first propose a contract-based approach to enable incentive-compatible service selection so that the service provider can effectively reduce the user's service uncertainties for precise service provision. Then, we develop a distributed allocation algorithm that incorporates robot dynamics and collision avoidance to allocate service robots and address scalability concerns associated with increasing numbers of service robots and users. We conduct simulations in eight scenarios to validate our approach. Comparative analysis against the robust allocation paradigm and two alternative uncertainty reduction strategies demonstrates that our approach achieves better allocation efficiency and accuracy.