Abstract:Federated learning (FL) is susceptible to a range of security threats. Although various defense mechanisms have been proposed, they are typically non-adaptive and tailored to specific types of attacks, leaving them insufficient in the face of multiple uncertain, unknown, and adaptive attacks employing diverse strategies. This work formulates adversarial federated learning under a mixture of various attacks as a Bayesian Stackelberg Markov game, based on which we propose the meta-Stackelberg defense composed of pre-training and online adaptation. {The gist is to simulate strong attack behavior using reinforcement learning (RL-based attacks) in pre-training and then design meta-RL-based defense to combat diverse and adaptive attacks.} We develop an efficient meta-learning approach to solve the game, leading to a robust and adaptive FL defense. Theoretically, our meta-learning algorithm, meta-Stackelberg learning, provably converges to the first-order $\varepsilon$-meta-equilibrium point in $O(\varepsilon^{-2})$ gradient iterations with $O(\varepsilon^{-4})$ samples per iteration. Experiments show that our meta-Stackelberg framework performs superbly against strong model poisoning and backdoor attacks of uncertain and unknown types.
Abstract:Previous research has shown that federated learning (FL) systems are exposed to an array of security risks. Despite the proposal of several defensive strategies, they tend to be non-adaptive and specific to certain types of attacks, rendering them ineffective against unpredictable or adaptive threats. This work models adversarial federated learning as a Bayesian Stackelberg Markov game (BSMG) to capture the defender's incomplete information of various attack types. We propose meta-Stackelberg learning (meta-SL), a provably efficient meta-learning algorithm, to solve the equilibrium strategy in BSMG, leading to an adaptable FL defense. We demonstrate that meta-SL converges to the first-order $\varepsilon$-equilibrium point in $O(\varepsilon^{-2})$ gradient iterations, with $O(\varepsilon^{-4})$ samples needed per iteration, matching the state of the art. Empirical evidence indicates that our meta-Stackelberg framework performs exceptionally well against potent model poisoning and backdoor attacks of an uncertain nature.
Abstract:In a federated learning (FL) system, malicious participants can easily embed backdoors into the aggregated model while maintaining the model's performance on the main task. To this end, various defenses, including training stage aggregation-based defenses and post-training mitigation defenses, have been proposed recently. While these defenses obtain reasonable performance against existing backdoor attacks, which are mainly heuristics based, we show that they are insufficient in the face of more advanced attacks. In particular, we propose a general reinforcement learning-based backdoor attack framework where the attacker first trains a (non-myopic) attack policy using a simulator built upon its local data and common knowledge on the FL system, which is then applied during actual FL training. Our attack framework is both adaptive and flexible and achieves strong attack performance and durability even under state-of-the-art defenses.