Abstract:Talking head synthesis with arbitrary speech audio is a crucial challenge in the field of digital humans. Recently, methods based on radiance fields have received increasing attention due to their ability to synthesize high-fidelity and identity-consistent talking heads from just a few minutes of training video. However, due to the limited scale of the training data, these methods often exhibit poor performance in audio-lip synchronization and visual quality. In this paper, we propose a novel 3D Gaussian-based method called PointTalk, which constructs a static 3D Gaussian field of the head and deforms it in sync with the audio. It also incorporates an audio-driven dynamic lip point cloud as a critical component of the conditional information, thereby facilitating the effective synthesis of talking heads. Specifically, the initial step involves generating the corresponding lip point cloud from the audio signal and capturing its topological structure. The design of the dynamic difference encoder aims to capture the subtle nuances inherent in dynamic lip movements more effectively. Furthermore, we integrate the audio-point enhancement module, which not only ensures the synchronization of the audio signal with the corresponding lip point cloud within the feature space, but also facilitates a deeper understanding of the interrelations among cross-modal conditional features. Extensive experiments demonstrate that our method achieves superior high-fidelity and audio-lip synchronization in talking head synthesis compared to previous methods.
Abstract:In this work, we discover that causal inference provides a promising approach to capture heterophilic message-passing in Graph Neural Network (GNN). By leveraging cause-effect analysis, we can discern heterophilic edges based on asymmetric node dependency. The learned causal structure offers more accurate relationships among nodes. To reduce the computational complexity, we introduce intervention-based causal inference in graph learning. We first simplify causal analysis on graphs by formulating it as a structural learning model and define the optimization problem within the Bayesian scheme. We then present an analysis of decomposing the optimization target into a consistency penalty and a structure modification based on cause-effect relations. We then estimate this target by conditional entropy and present insights into how conditional entropy quantifies the heterophily. Accordingly, we propose CausalMP, a causal message-passing discovery network for heterophilic graph learning, that iteratively learns the explicit causal structure of input graphs. We conduct extensive experiments in both heterophilic and homophilic graph settings. The result demonstrates that the our model achieves superior link prediction performance. Training on causal structure can also enhance node representation in classification task across different base models.
Abstract:Generative AI (GenAI), which aims to synthesize realistic and diverse data samples from latent variables or other data modalities, has achieved remarkable results in various domains, such as natural language, images, audio, and graphs. However, they also pose challenges and risks to data privacy, security, and ethics. Machine unlearning is the process of removing or weakening the influence of specific data samples or features from a trained model, without affecting its performance on other data or tasks. While machine unlearning has shown significant efficacy in traditional machine learning tasks, it is still unclear if it could help GenAI become safer and aligned with human desire. To this end, this position paper provides an in-depth discussion of the machine unlearning approaches for GenAI. Firstly, we formulate the problem of machine unlearning tasks on GenAI and introduce the background. Subsequently, we systematically examine the limitations of machine unlearning on GenAI models by focusing on the two representative branches: LLMs and image generative (diffusion) models. Finally, we provide our prospects mainly from three aspects: benchmark, evaluation metrics, and utility-unlearning trade-off, and conscientiously advocate for the future development of this field.
Abstract:Cross-Domain Recommendation (CDR) seeks to utilize knowledge from different domains to alleviate the problem of data sparsity in the target recommendation domain, and it has been gaining more attention in recent years. Although there have been notable advancements in this area, most current methods represent users and items in Euclidean space, which is not ideal for handling long-tail distributed data in recommendation systems. Additionally, adding data from other domains can worsen the long-tail characteristics of the entire dataset, making it harder to train CDR models effectively. Recent studies have shown that hyperbolic methods are particularly suitable for modeling long-tail distributions, which has led us to explore hyperbolic representations for users and items in CDR scenarios. However, due to the distinct characteristics of the different domains, applying hyperbolic representation learning to CDR tasks is quite challenging. In this paper, we introduce a new framework called Hyperbolic Contrastive Learning (HCTS), designed to capture the unique features of each domain while enabling efficient knowledge transfer between domains. We achieve this by embedding users and items from each domain separately and mapping them onto distinct hyperbolic manifolds with adjustable curvatures for prediction. To improve the representations of users and items in the target domain, we develop a hyperbolic contrastive learning module for knowledge transfer. Extensive experiments on real-world datasets demonstrate that hyperbolic manifolds are a promising alternative to Euclidean space for CDR tasks.
Abstract:Graph Neural Architecture Search (GNAS) has achieved superior performance on various graph-structured tasks. However, existing GNAS studies overlook the applications of GNAS in resource-constraint scenarios. This paper proposes to design a joint graph data and architecture mechanism, which identifies important sub-architectures via the valuable graph data. To search for optimal lightweight Graph Neural Networks (GNNs), we propose a Lightweight Graph Neural Architecture Search with Graph SparsIfication and Network Pruning (GASSIP) method. In particular, GASSIP comprises an operation-pruned architecture search module to enable efficient lightweight GNN search. Meanwhile, we design a novel curriculum graph data sparsification module with an architecture-aware edge-removing difficulty measurement to help select optimal sub-architectures. With the aid of two differentiable masks, we iteratively optimize these two modules to efficiently search for the optimal lightweight architecture. Extensive experiments on five benchmarks demonstrate the effectiveness of GASSIP. Particularly, our method achieves on-par or even higher node classification performance with half or fewer model parameters of searched GNNs and a sparser graph.
Abstract:Large Language Models (LLMs) have achieved unparalleled success across diverse language modeling tasks in recent years. However, this progress has also intensified ethical concerns, impacting the deployment of LLMs in everyday contexts. This paper provides a comprehensive survey of ethical challenges associated with LLMs, from longstanding issues such as copyright infringement, systematic bias, and data privacy, to emerging problems like truthfulness and social norms. We critically analyze existing research aimed at understanding, examining, and mitigating these ethical risks. Our survey underscores integrating ethical standards and societal values into the development of LLMs, thereby guiding the development of responsible and ethically aligned language models.
Abstract:Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning.
Abstract:Large Language Models (LLMs) have advanced rapidly but face significant memory demands. While quantization has shown promise for LLMs, current methods typically require lengthy training to alleviate the performance degradation from quantization loss. However, deploying LLMs across diverse scenarios with different resource constraints, e.g., servers and personal computers, requires repeated training per application, which amplifies the lengthy training problem. Given that, it is advantageous to train a once-for-all (OFA) supernet capable of yielding diverse optimal subnets for downstream applications through one-shot training. Nonetheless, the scale of current language models impedes efficiency and amplifies interference from weight sharing between subnets. We make an initial attempt to extend the once-for-all framework to large language models. Specifically, we decouple shared weights to eliminate the interference and incorporate Low-Rank adapters for training efficiency. Furthermore, we observe the imbalance allocation of training resources from the traditional uniform sampling. A non-parametric scheduler is introduced to adjust the sampling rate for each quantization configuration, achieving a more balanced allocation among subnets with varying demands. We validate the approach on LLaMA2 families, and downstream evaluation confirms our ability to maintain high performance while significantly reducing deployment time faced with multiple scenarios.
Abstract:Current text-to-image diffusion models have achieved groundbreaking results in image generation tasks. However, the unavoidable inclusion of sensitive information during pre-training introduces significant risks such as copyright infringement and privacy violations in the generated images. Machine Unlearning (MU) provides a effective way to the sensitive concepts captured by the model, has been shown to be a promising approach to addressing these issues. Nonetheless, existing MU methods for concept erasure encounter two primary bottlenecks: 1) generalization issues, where concept erasure is effective only for the data within the unlearn set, and prompts outside the unlearn set often still result in the generation of sensitive concepts; and 2) utility drop, where erasing target concepts significantly degrades the model's performance. To this end, this paper first proposes a concept domain correction framework for unlearning concepts in diffusion models. By aligning the output domains of sensitive concepts and anchor concepts through adversarial training, we enhance the generalizability of the unlearning results. Secondly, we devise a concept-preserving scheme based on gradient surgery. This approach alleviates the parts of the unlearning gradient that contradict the relearning gradient, ensuring that the process of unlearning minimally disrupts the model's performance. Finally, extensive experiments validate the effectiveness of our model, demonstrating our method's capability to address the challenges of concept unlearning in diffusion models while preserving model utility.
Abstract:Graph Neural Networks (GNNs) have achieved great success in Knowledge Graph Completion (KGC) by modelling how entities and relations interact in recent years. However, the explanation of the predicted facts has not caught the necessary attention. Proper explanations for the results of GNN-based KGC models increase model transparency and help researchers develop more reliable models. Existing practices for explaining KGC tasks rely on instance/subgraph-based approaches, while in some scenarios, paths can provide more user-friendly and interpretable explanations. Nonetheless, the methods for generating path-based explanations for KGs have not been well-explored. To address this gap, we propose Power-Link, the first path-based KGC explainer that explores GNN-based models. We design a novel simplified graph-powering technique, which enables the generation of path-based explanations with a fully parallelisable and memory-efficient training scheme. We further introduce three new metrics for quantitative evaluation of the explanations, together with a qualitative human evaluation. Extensive experiments demonstrate that Power-Link outperforms the SOTA baselines in interpretability, efficiency, and scalability.