Abstract:As communication systems transition from symbol transmission to conveying meaningful information, sixth-generation (6G) networks emphasize semantic communication. This approach prioritizes high-level semantic information, improving robustness and reducing redundancy across modalities like text, speech, and images. However, traditional semantic communication faces limitations, including static coding strategies, poor generalization, and reliance on task-specific knowledge bases that hinder adaptability. To overcome these challenges, we propose a novel system combining scene understanding, Large Language Models (LLMs), and open channel coding, named \textbf{OpenSC}. Traditional systems rely on fixed domain-specific knowledge bases, limiting their ability to generalize. Our open channel coding approach leverages shared, publicly available knowledge, enabling flexible, adaptive encoding. This dynamic system reduces reliance on static task-specific data, enhancing adaptability across diverse tasks and environments. Additionally, we use scene graphs for structured semantic encoding, capturing object relationships and context to improve tasks like Visual Question Answering (VQA). Our approach selectively encodes key semantic elements, minimizing redundancy and improving transmission efficiency. Experimental results show significant improvements in both semantic understanding and efficiency, advancing the potential of adaptive, generalizable semantic communication in 6G networks.
Abstract:It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, soft constraints are semantically related and difficult to verify through automated methods. These constraints remain a significant challenge for LLMs. To enhance the ability of LLMs to follow soft constraints, we initially design a pipeline to obtain high-quality outputs automatically. Additionally, to fully utilize the acquired data, we introduce a training paradigm based on curriculum learning. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements. The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraints.
Abstract:Multimodal large language models (MLLMs), such as GPT-4o, Gemini, LLaVA, and Flamingo, have made significant progress in integrating visual and textual modalities, excelling in tasks like visual question answering (VQA), image captioning, and content retrieval. They can generate coherent and contextually relevant descriptions of images. However, they still face challenges in accurately identifying and counting objects and determining their spatial locations, particularly in complex scenes with overlapping or small objects. To address these limitations, we propose a novel framework based on multimodal retrieval-augmented generation (RAG), which introduces structured scene graphs to enhance object recognition, relationship identification, and spatial understanding within images. Our framework improves the MLLM's capacity to handle tasks requiring precise visual descriptions, especially in scenarios with challenging perspectives, such as aerial views or scenes with dense object arrangements. Finally, we conduct extensive experiments on the VG-150 dataset that focuses on first-person visual understanding and the AUG dataset that involves aerial imagery. The results show that our approach consistently outperforms existing MLLMs in VQA tasks, which stands out in recognizing, localizing, and quantifying objects in different spatial contexts and provides more accurate visual descriptions.
Abstract:This paper addresses the critical need for democratizing large language models (LLM) in the Arab world, a region that has seen slower progress in developing models comparable to state-of-the-art offerings like GPT-4 or ChatGPT 3.5, due to a predominant focus on mainstream languages (e.g., English and Chinese). One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding. However, using a different vocabulary often leads to a degradation of learned knowledge since many words are initially out-of-vocabulary (OOV) when training starts. Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion, which is implemented by a modified BPE algorithm that progressively extends the Arabic subwords in its dynamic vocabulary during training, thereby balancing the OOV ratio at every stage. The ablation study demonstrated the effectiveness of Progressive Vocabulary Expansion. Moreover, AraLLaMA achieves decent performance comparable to the best Arabic LLMs across a variety of Arabic benchmarks. Models, training data, benchmarks, and codes will be all open-sourced.
Abstract:Multimodal semantic communication, which integrates various data modalities such as text, images, and audio, significantly enhances communication efficiency and reliability. It has broad application prospects in fields such as artificial intelligence, autonomous driving, and smart homes. However, current research primarily relies on analog channels and assumes constant channel states (perfect CSI), which is inadequate for addressing dynamic physical channels and noise in real-world scenarios. Existing methods often focus on single modality tasks and fail to handle multimodal stream data, such as video and audio, and their corresponding tasks. Furthermore, current semantic encoding and decoding modules mainly transmit single modality features, neglecting the need for multimodal semantic enhancement and recognition tasks. To address these challenges, this paper proposes a pilot-guided framework for multimodal semantic communication specifically tailored for audio-visual event localization tasks. This framework utilizes digital pilot codes and channel modules to guide the state of analog channels in real-wold scenarios and designs Euler-based multimodal semantic encoding and decoding that consider time-frequency characteristics based on dynamic channel state. This approach effectively handles multimodal stream source data, especially for audio-visual event localization tasks. Extensive numerical experiments demonstrate the robustness of the proposed framework in channel changes and its support for various communication scenarios. The experimental results show that the framework outperforms existing benchmark methods in terms of Signal-to-Noise Ratio (SNR), highlighting its advantage in semantic communication quality.
Abstract:The exponential growth in wireless data traffic, driven by the proliferation of mobile devices and smart applications, poses significant challenges for modern communication systems. Ensuring the secure and reliable transmission of multimodal semantic information is increasingly critical, particularly for tasks like Audio-Visual Event (AVE) localization. This letter introduces MMTrustSC, a novel framework designed to address these challenges by enhancing the security and reliability of multimodal communication. MMTrustSC incorporates advanced semantic encoding techniques to safeguard data integrity and privacy. It features a two-level coding scheme that combines error-correcting codes with conventional encoders to improve the accuracy and reliability of multimodal data transmission. Additionally, MMTrustSC employs hybrid encryption, integrating both asymmetric and symmetric encryption methods, to secure semantic information and ensure its confidentiality and integrity across potentially hostile networks. Simulation results validate MMTrustSC's effectiveness, demonstrating substantial improvements in data transmission accuracy and reliability for AVE localization tasks. This framework represents a significant advancement in managing intermodal information complementarity and mitigating physical noise, thus enhancing overall system performance.
Abstract:Instruction tuning is a crucial technique for aligning language models with humans' actual goals in the real world. Extensive research has highlighted the quality of instruction data is essential for the success of this alignment. However, creating high-quality data manually is labor-intensive and time-consuming, which leads researchers to explore using LLMs to synthesize data. Recent studies have focused on using a stronger LLM to iteratively enhance existing instruction data, showing promising results. Nevertheless, previous work often lacks control over the evolution direction, resulting in high uncertainty in the data synthesis process and low-quality instructions. In this paper, we introduce a general and scalable framework, IDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search), a scalable framework for efficiently synthesizing instructions. With tree search and evaluation models, it can efficiently guide each instruction to evolve into a high-quality form, aiding in instruction fine-tuning. Experimental results show that IDEA-MCTS significantly enhances the seed instruction data, raising the average evaluation scores of quality, diversity, and complexity from 2.19 to 3.81. Furthermore, in open-domain benchmarks, experimental results show that IDEA-MCTS improves the accuracy of real-world instruction-following skills in LLMs by an average of 5\% in low-resource settings.
Abstract:Audio-driven talking head synthesis strives to generate lifelike video portraits from provided audio. The diffusion model, recognized for its superior quality and robust generalization, has been explored for this task. However, establishing a robust correspondence between temporal audio cues and corresponding spatial facial expressions with diffusion models remains a significant challenge in talking head generation. To bridge this gap, we present DreamHead, a hierarchical diffusion framework that learns spatial-temporal correspondences in talking head synthesis without compromising the model's intrinsic quality and adaptability.~DreamHead learns to predict dense facial landmarks from audios as intermediate signals to model the spatial and temporal correspondences.~Specifically, a first hierarchy of audio-to-landmark diffusion is first designed to predict temporally smooth and accurate landmark sequences given audio sequence signals. Then, a second hierarchy of landmark-to-image diffusion is further proposed to produce spatially consistent facial portrait videos, by modeling spatial correspondences between the dense facial landmark and appearance. Extensive experiments show that proposed DreamHead can effectively learn spatial-temporal consistency with the designed hierarchical diffusion and produce high-fidelity audio-driven talking head videos for multiple identities.
Abstract:Large Language Models (LLMs) have garnered widespread attention due to their remarkable performance across various tasks. However, to mitigate the issue of hallucinations, LLMs often incorporate retrieval-augmented pipeline to provide them with rich external knowledge and context. Nevertheless, challenges stem from inaccurate and coarse-grained context retrieved from the retriever. Supplying irrelevant context to the LLMs can result in poorer responses, increased inference latency, and higher costs. This paper introduces a method called Instruction-Aware Contextual Compression, which filters out less informative content, thereby accelerating and enhancing the use of LLMs. The experimental results demonstrate that Instruction-Aware Contextual Compression notably reduces memory consumption and minimizes generation latency while maintaining performance levels comparable to those achieved with the use of the full context. Specifically, we achieved a 50% reduction in context-related costs, resulting in a 5% reduction in inference memory usage and a 2.2-fold increase in inference speed, with only a minor drop of 0.047 in Rouge-1. These findings suggest that our method strikes an effective balance between efficiency and performance.
Abstract:Personalized motion planning holds significant importance within urban automated driving, catering to the unique requirements of individual users. Nevertheless, prior endeavors have frequently encountered difficulties in simultaneously addressing two crucial aspects: personalized planning within intricate urban settings and enhancing planning performance through data utilization. The challenge arises from the expensive and limited nature of user data, coupled with the scene state space tending towards infinity. These factors contribute to overfitting and poor generalization problems during model training. Henceforth, we propose an instance-based transfer imitation learning approach. This method facilitates knowledge transfer from extensive expert domain data to the user domain, presenting a fundamental resolution to these issues. We initially train a pre-trained model using large-scale expert data. Subsequently, during the fine-tuning phase, we feed the batch data, which comprises expert and user data. Employing the inverse reinforcement learning technique, we extract the style feature distribution from user demonstrations, constructing the regularization term for the approximation of user style. In our experiments, we conducted extensive evaluations of the proposed method. Compared to the baseline methods, our approach mitigates the overfitting issue caused by sparse user data. Furthermore, we discovered that integrating the driving model with a differentiable nonlinear optimizer as a safety protection layer for end-to-end personalized fine-tuning results in superior planning performance.