Abstract:Autonomous agents operating on the graphical user interfaces (GUIs) of various applications hold immense practical value. Unlike the large language model (LLM)-based methods which rely on structured texts and customized backends, the approaches using large vision-language models (LVLMs) are more intuitive and adaptable as they can visually perceive and directly interact with screens, making them indispensable in general scenarios without text metadata and tailored backends. Given the lack of high-quality training data for GUI-related tasks in existing work, this paper aims to enhance the GUI understanding and interacting capabilities of LVLMs through a data-driven approach. We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web. Evaluation results on various GUI and agent benchmarks demonstrate that the model trained with the dataset generated through EDGE exhibits superior webpage understanding capabilities, which can then be easily transferred to previously unseen desktop and mobile environments. Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work. Our source code, the dataset and the model are available at https://anonymous.4open.science/r/EDGE-1CDB.
Abstract:Logs play a critical role in providing essential information for system monitoring and troubleshooting. Recently, with the success of pre-trained language models (PLMs) and large language models (LLMs) in natural language processing (NLP), smaller PLMs (such as BERT) and LLMs (like ChatGPT) have become the current mainstream approaches for log analysis. While LLMs possess rich knowledge, their high computational costs and unstable performance make LLMs impractical for analyzing logs directly. In contrast, smaller PLMs can be fine-tuned for specific tasks even with limited computational resources, making them more practical. However, these smaller PLMs face challenges in understanding logs comprehensively due to their limited expert knowledge. To better utilize the knowledge embedded within LLMs for log understanding, this paper introduces a novel knowledge enhancement framework, called LUK, which acquires expert knowledge from LLMs to empower log understanding on a smaller PLM. Specifically, we design a multi-expert collaboration framework based on LLMs consisting of different roles to acquire expert knowledge. In addition, we propose two novel pre-training tasks to enhance the log pre-training with expert knowledge. LUK achieves state-of-the-art results on different log analysis tasks and extensive experiments demonstrate expert knowledge from LLMs can be utilized more effectively to understand logs.
Abstract:Quantities are distinct and critical components of texts that characterize the magnitude properties of entities, providing a precise perspective for the understanding of natural language, especially for reasoning tasks. In recent years, there has been a flurry of research on reasoning tasks based on large language models (LLMs), most of which solely focus on numerical values, neglecting the dimensional concept of quantities with units despite its importance. We argue that the concept of dimension is essential for precisely understanding quantities and of great significance for LLMs to perform quantitative reasoning. However, the lack of dimension knowledge and quantity-related benchmarks has resulted in low performance of LLMs. Hence, we present a framework to enhance the quantitative reasoning ability of language models based on dimension perception. We first construct a dimensional unit knowledge base (DimUnitKB) to address the knowledge gap in this area. We propose a benchmark DimEval consisting of seven tasks of three categories to probe and enhance the dimension perception skills of LLMs. To evaluate the effectiveness of our methods, we propose a quantitative reasoning task and conduct experiments. The experimental results show that our dimension perception method dramatically improves accuracy (43.55%->50.67%) on quantitative reasoning tasks compared to GPT-4.
Abstract:This paper introduces the Life Scapes Reasoning Benchmark (LSR-Benchmark), a novel dataset targeting real-life scenario reasoning, aiming to close the gap in artificial neural networks' ability to reason in everyday contexts. In contrast to domain knowledge reasoning datasets, LSR-Benchmark comprises free-text formatted questions with rich information on real-life scenarios, human behaviors, and character roles. The dataset consists of 2,162 questions collected from open-source online sources and is manually annotated to improve its quality. Experiments are conducted using state-of-the-art language models, such as gpt3.5-turbo and instruction fine-tuned llama models, to test the performance in LSR-Benchmark. The results reveal that humans outperform these models significantly, indicating a persisting challenge for machine learning models in comprehending daily human life.
Abstract:New Natural Langauge Process~(NLP) benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present Xiezhi, the most comprehensive evaluation suite designed to assess holistic domain knowledge. Xiezhi comprises multiple-choice questions across 516 diverse disciplines ranging from 13 different subjects with 249,587 questions and accompanied by Xiezhi-Specialty and Xiezhi-Interdiscipline, both with 15k questions. We conduct evaluation of the 47 cutting-edge LLMs on Xiezhi. Results indicate that LLMs exceed average performance of humans in science, engineering, agronomy, medicine, and art, but fall short in economics, jurisprudence, pedagogy, literature, history, and management. We anticipate Xiezhi will help analyze important strengths and shortcomings of LLMs, and the benchmark is released in~\url{https://github.com/MikeGu721/XiezhiBenchmark}.
Abstract:Domain knowledge refers to the in-depth understanding, expertise, and familiarity with a specific subject, industry, field, or area of special interest. The existing benchmarks are all lack of an overall design for domain knowledge evaluation. Holding the belief that the real ability of domain language understanding can only be fairly evaluated by an comprehensive and in-depth benchmark, we introduces the Domma, a Domain Mastery Benchmark. DomMa targets at testing Large Language Models (LLMs) on their domain knowledge understanding, it features extensive domain coverage, large data volume, and a continually updated data set based on Chinese 112 first-level subject classifications. DomMa consist of 100,000 questions in both Chinese and English sourced from graduate entrance examinations and undergraduate exams in Chinese college. We have also propose designs to make benchmark and evaluation process more suitable to LLMs.
Abstract:Taxonomy is formulated as directed acyclic concepts graphs or trees that support many downstream tasks. Many new coming concepts need to be added to an existing taxonomy. The traditional taxonomy expansion task aims only at finding the best position for new coming concepts in the existing taxonomy. However, they have two drawbacks when being applied to the real-scenarios. The previous methods suffer from low-efficiency since they waste much time when most of the new coming concepts are indeed noisy concepts. They also suffer from low-effectiveness since they collect training samples only from the existing taxonomy, which limits the ability of the model to mine more hypernym-hyponym relationships among real concepts. This paper proposes a pluggable framework called Generative Adversarial Network for Taxonomy Entering Evaluation (GANTEE) to alleviate these drawbacks. A generative adversarial network is designed in this framework by discriminative models to alleviate the first drawback and the generative model to alleviate the second drawback. Two discriminators are used in GANTEE to provide long-term and short-term rewards, respectively. Moreover, to further improve the efficiency, pre-trained language models are used to retrieve the representation of the concepts quickly. The experiments on three real-world large-scale datasets with two different languages show that GANTEE improves the performance of the existing taxonomy expansion methods in both effectiveness and efficiency.
Abstract:The model's ability to understand synonymous expression is crucial in many kinds of downstream tasks. It will make the model to better understand the similarity between context, and more robust to the synonym substitution attack. However, many Pretrained Language Model (PLM) lack synonym knowledge due to limitation of small-scale synsets and PLM's pretraining objectives. In this paper, we propose a framework called Sem4SAP to mine synsets from Open Knowledge Graph (Open-KG) and using the mined synsets to do synonym-aware pretraining for language models. We propose to coarsly filter the content in Open-KG and use the frequency information to better help the clustering process under low-resource unsupervised conditions. We expand the mined synsets by migrating core semantics between synonymous expressions.We also propose two novel and effective synonym-aware pre-training methods for injecting synonym knowledge into PLMs.Extensive experiments demonstrate that Sem4SAP can dramatically outperform the original PLMs and other baselines on ten different tasks.
Abstract:Knowledge graphs (KGs) are an important source repository for a wide range of applications and rule mining from KGs recently attracts wide research interest in the KG-related research community. Many solutions have been proposed for the rule mining from large-scale KGs, which however are limited in the inefficiency of rule generation and ineffectiveness of rule evaluation. To solve these problems, in this paper we propose a generation-then-evaluation rule mining approach guided by reinforcement learning. Specifically, a two-phased framework is designed. The first phase aims to train a reinforcement learning agent for rule generation from KGs, and the second is to utilize the value function of the agent to guide the step-by-step rule generation. We conduct extensive experiments on several datasets and the results prove that our rule mining solution achieves state-of-the-art performance in terms of efficiency and effectiveness.
Abstract:Transfer learning aims to solve the data sparsity for a target domain by applying information of the source domain. Given a sequence (e.g. a natural language sentence), the transfer learning, usually enabled by recurrent neural network (RNN), represents the sequential information transfer. RNN uses a chain of repeating cells to model the sequence data. However, previous studies of neural network based transfer learning simply represents the whole sentence by a single vector, which is unfeasible for seq2seq and sequence labeling. Meanwhile, such layer-wise transfer learning mechanisms lose the fine-grained cell-level information from the source domain. In this paper, we proposed the aligned recurrent transfer, ART, to achieve cell-level information transfer. ART is under the pre-training framework. Each cell attentively accepts transferred information from a set of positions in the source domain. Therefore, ART learns the cross-domain word collocations in a more flexible way. We conducted extensive experiments on both sequence labeling tasks (POS tagging, NER) and sentence classification (sentiment analysis). ART outperforms the state-of-the-arts over all experiments.