Abstract:Shortcut learning refers to the phenomenon where models employ simple, non-robust decision rules in practical tasks, which hinders their generalization and robustness. With the rapid development of large language models (LLMs) in recent years, an increasing number of studies have shown the impact of shortcut learning on LLMs. This paper provides a novel perspective to review relevant research on shortcut learning in In-Context Learning (ICL). It conducts a detailed exploration of the types of shortcuts in ICL tasks, their causes, available benchmarks, and strategies for mitigating shortcuts. Based on corresponding observations, it summarizes the unresolved issues in existing research and attempts to outline the future research landscape of shortcut learning.
Abstract:Posterior sampling in contextual bandits with a Gaussian prior can be implemented exactly or approximately using the Laplace approximation. The Gaussian prior is computationally efficient but it cannot describe complex distributions. In this work, we propose approximate posterior sampling algorithms for contextual bandits with a diffusion model prior. The key idea is to sample from a chain of approximate conditional posteriors, one for each stage of the reverse process, which are estimated in a closed form using the Laplace approximation. Our approximations are motivated by posterior sampling with a Gaussian prior, and inherit its simplicity and efficiency. They are asymptotically consistent and perform well empirically on a variety of contextual bandit problems.
Abstract:Recently, there has been significant interest in replacing the reward model in Reinforcement Learning with Human Feedback (RLHF) methods for Large Language Models (LLMs), such as Direct Preference Optimization (DPO) and its variants. These approaches commonly use a binary cross-entropy mechanism on pairwise samples, i.e., minimizing and maximizing the loss based on preferred or dis-preferred responses, respectively. However, while this training strategy omits the reward model, it also overlooks the varying preference degrees within different responses. We hypothesize that this is a key factor hindering LLMs from sufficiently understanding human preferences. To address this problem, we propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss, thereby helping LLMs improve their ability to understand the degree of preference. Extensive experiments are conducted on two widely used datasets of different tasks. The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods and significantly boost their performance to achieve state-of-the-art performance. We also conduct detailed analyses to offer comprehensive insights into SPO, which verifies its effectiveness. The code is available at https://github.com/lijian16/SPO.
Abstract:Today's top advertisers typically manage hundreds of campaigns simultaneously and consistently launch new ones throughout the year. A crucial challenge for marketing managers is determining the optimal allocation of limited budgets across various ad lines in each campaign to maximize cumulative returns, especially given the huge uncertainty in return outcomes. In this paper, we propose to formulate budget allocation as a multi-task combinatorial bandit problem and introduce a novel online budget allocation system. The proposed system: i) integrates a Bayesian hierarchical model to intelligently utilize the metadata of campaigns and ad lines and budget size, ensuring efficient information sharing; ii) provides the flexibility to incorporate diverse modeling techniques such as Linear Regression, Gaussian Processes, and Neural Networks, catering to diverse environmental complexities; and iii) employs the Thompson sampling (TS) technique to strike a balance between exploration and exploitation. Through offline evaluation and online experiments, our system demonstrates robustness and adaptability, effectively maximizing the overall cumulative returns. A Python implementation of the proposed procedure is available at https://anonymous.4open.science/r/MCMAB.
Abstract:This paper presents our method for the generative track of The First Dataset Distillation Challenge at ECCV 2024. Since the diffusion model has become the mainstay of generative models because of its high-quality generative effects, we focus on distillation methods based on the diffusion model. Considering that the track can only generate a fixed number of images in 10 minutes using a generative model for CIFAR-100 and Tiny-ImageNet datasets, we need to use a generative model that can generate images at high speed. In this study, we proposed a novel generative dataset distillation method based on Stable Diffusion. Specifically, we use the SDXL-Turbo model which can generate images at high speed and quality. Compared to other diffusion models that can only generate images per class (IPC) = 1, our method can achieve an IPC = 10 for Tiny-ImageNet and an IPC = 20 for CIFAR-100, respectively. Additionally, to generate high-quality distilled datasets for CIFAR-100 and Tiny-ImageNet, we use the class information as text prompts and post data augmentation for the SDXL-Turbo model. Experimental results show the effectiveness of the proposed method, and we achieved third place in the generative track of the ECCV 2024 DD Challenge. Codes are available at https://github.com/Guang000/BANKO.
Abstract:It is challenging for the mobile robot to achieve autonomous and mapless navigation in the unknown environment with uneven terrain. In this study, we present a layered and systematic pipeline. At the local level, we maintain a tree structure that is dynamically extended with the navigation. This structure unifies the planning with the terrain identification. Besides, it contributes to explicitly identifying the hazardous areas on uneven terrain. In particular, certain nodes of the tree are consistently kept to form a sparse graph at the global level, which records the history of the exploration. A series of subgoals that can be obtained in the tree and the graph are utilized for leading the navigation. To determine a subgoal, we develop an evaluation method whose input elements can be efficiently obtained on the layered structure. We conduct both simulation and real-world experiments to evaluate the developed method and its key modules. The experimental results demonstrate the effectiveness and efficiency of our method. The robot can travel through the unknown uneven region safely and reach the target rapidly without a preconstructed map.
Abstract:Cooperative perception offers several benefits for enhancing the capabilities of autonomous vehicles and improving road safety. Using roadside sensors in addition to onboard sensors increases reliability and extends the sensor range. External sensors offer higher situational awareness for automated vehicles and prevent occlusions. We propose CoopDet3D, a cooperative multi-modal fusion model, and TUMTraf-V2X, a perception dataset, for the cooperative 3D object detection and tracking task. Our dataset contains 2,000 labeled point clouds and 5,000 labeled images from five roadside and four onboard sensors. It includes 30k 3D boxes with track IDs and precise GPS and IMU data. We labeled eight categories and covered occlusion scenarios with challenging driving maneuvers, like traffic violations, near-miss events, overtaking, and U-turns. Through multiple experiments, we show that our CoopDet3D camera-LiDAR fusion model achieves an increase of +14.36 3D mAP compared to a vehicle camera-LiDAR fusion model. Finally, we make our dataset, model, labeling tool, and dev-kit publicly available on our website: https://tum-traffic-dataset.github.io/tumtraf-v2x.
Abstract:Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird's eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly, it improves local 3D semantic occupancy predictions by hybrid fusion of (i) semantic and occupancy task features, and (ii) compressed orthogonal attention features shared between vehicles. Additionally, due to the lack of a collaborative perception dataset designed for semantic occupancy prediction, we augment a current collaborative perception dataset to include 3D collaborative semantic occupancy labels for a more robust evaluation. The experimental findings highlight that: (i) our collaborative semantic occupancy predictions excel above the results from single vehicles by over 30%, and (ii) models anchored on semantic occupancy outpace state-of-the-art collaborative 3D detection techniques in subsequent perception applications, showcasing enhanced accuracy and enriched semantic-awareness in road environments.
Abstract:This paper explores the causal reasoning of large language models (LLMs) to enhance their interpretability and reliability in advancing artificial intelligence. Despite the proficiency of LLMs in a range of tasks, their potential for understanding causality requires further exploration. We propose a novel causal attribution model that utilizes "do-operators" for constructing counterfactual scenarios, allowing us to systematically quantify the influence of input numerical data and LLMs' pre-existing knowledge on their causal reasoning processes. Our newly developed experimental setup assesses LLMs' reliance on contextual information and inherent knowledge across various domains. Our evaluation reveals that LLMs' causal reasoning ability depends on the context and domain-specific knowledge provided, and supports the argument that "knowledge is, indeed, what LLMs principally require for sound causal reasoning". On the contrary, in the absence of knowledge, LLMs still maintain a degree of causal reasoning using the available numerical data, albeit with limitations in the calculations.
Abstract:Large Language Models (LLMs) have shown their success in language understanding and reasoning on general topics. However, their capability to inference based on user-specified structured data and knowledge in corpus-rare concepts like causal decision-making is still limited. In this work, we explore the possibility of fine-tuning an open-sourced LLM into LLM4Causal, which can identify the causal task, execute a corresponding function, and interpret its numerical results based on users' queries and the provided dataset. Meanwhile, we propose a data generation process for more controllable GPT prompting and present two instruction-tuning datasets: (1) Causal-Retrieval-Bench for causal problem identification and input parameter extraction for causal function calling and (2) Causal-Interpret-Bench for in-context causal interpretation. With three case studies, we showed that LLM4Causal can deliver end-to-end solutions for causal problems and provide easy-to-understand answers. Numerical studies also reveal that it has a remarkable ability to identify the correct causal task given a query.