Abstract:Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
Abstract:In autonomous driving, it is crucial to correctly interpret traffic gestures (TGs), such as those of an authority figure providing orders or instructions, or a pedestrian signaling the driver, to ensure a safe and pleasant traffic environment for all road users. This study investigates the capabilities of state-of-the-art vision-language models (VLMs) in zero-shot interpretation, focusing on their ability to caption and classify human gestures in traffic contexts. We create and publicly share two custom datasets with varying formal and informal TGs, such as 'Stop', 'Reverse', 'Hail', etc. The datasets are "Acted TG (ATG)" and "Instructive TG In-The-Wild (ITGI)". They are annotated with natural language, describing the pedestrian's body position and gesture. We evaluate models using three methods utilizing expert-generated captions as baseline and control: (1) caption similarity, (2) gesture classification, and (3) pose sequence reconstruction similarity. Results show that current VLMs struggle with gesture understanding: sentence similarity averages below 0.59, and classification F1 scores reach only 0.14-0.39, well below the expert baseline of 0.70. While pose reconstruction shows potential, it requires more data and refined metrics to be reliable. Our findings reveal that although some SOTA VLMs can interpret zero-shot human traffic gestures, none are accurate and robust enough to be trustworthy, emphasizing the need for further research in this domain.
Abstract:In this paper, we address a novel image restoration problem relevant to machine learning dataset curation: the detection and removal of noisy mirrored padding artifacts. While data augmentation techniques like padding are necessary for standardizing image dimensions, they can introduce artifacts that degrade model evaluation when datasets are repurposed across domains. We propose a systematic algorithm to precisely delineate the reflection boundary through a minimum mean squared error approach with thresholding and remove reflective padding. Our method effectively identifies the transition between authentic content and its mirrored counterpart, even in the presence of compression or interpolation noise. We demonstrate our algorithm's efficacy on the SHEL5k dataset, showing significant performance improvements in zero-shot object detection tasks using OWLv2, with average precision increasing from 0.47 to 0.61 for hard hat detection and from 0.68 to 0.73 for person detection. By addressing annotation inconsistencies and distorted objects in padded regions, our approach enhances dataset integrity, enabling more reliable model evaluation across computer vision tasks.
Abstract:Even though a significant amount of work has been done to increase the safety of transportation networks, accidents still occur regularly. They must be understood as unavoidable and sporadic outcomes of traffic networks. No public dataset contains 3D annotations of real-world accidents recorded from roadside sensors. We present the Accid3nD dataset, a collection of real-world highway accidents in different weather and lighting conditions. It contains vehicle crashes at high-speed driving with 2,634,233 labeled 2D bounding boxes, instance masks, and 3D bounding boxes with track IDs. In total, the dataset contains 111,945 labeled frames recorded from four roadside cameras and LiDARs at 25 Hz. The dataset contains six object classes and is provided in the OpenLABEL format. We propose an accident detection model that combines a rule-based approach with a learning-based one. Experiments and ablation studies on our dataset show the robustness of our proposed method. The dataset, model, and code are available on our website: https://accident-dataset.github.io.
Abstract:Human-interactive robotic systems, particularly autonomous vehicles (AVs), must effectively integrate human instructions into their motion planning. This paper introduces doScenes, a novel dataset designed to facilitate research on human-vehicle instruction interactions, focusing on short-term directives that directly influence vehicle motion. By annotating multimodal sensor data with natural language instructions and referentiality tags, doScenes bridges the gap between instruction and driving response, enabling context-aware and adaptive planning. Unlike existing datasets that focus on ranking or scene-level reasoning, doScenes emphasizes actionable directives tied to static and dynamic scene objects. This framework addresses limitations in prior research, such as reliance on simulated data or predefined action sets, by supporting nuanced and flexible responses in real-world scenarios. This work lays the foundation for developing learning strategies that seamlessly integrate human instructions into autonomous systems, advancing safe and effective human-vehicle collaboration for vision-language navigation. We make our data publicly available at https://www.github.com/rossgreer/doScenes
Abstract:This paper evaluates the use of vision-language models (VLMs) for zero-shot detection and association of hardhats to enhance construction safety. Given the significant risk of head injuries in construction, proper enforcement of hardhat use is critical. We investigate the applicability of foundation models, specifically OWLv2, for detecting hardhats in real-world construction site images. Our contributions include the creation of a new benchmark dataset, Hardhat Safety Detection Dataset, by filtering and combining existing datasets and the development of a cascaded detection approach. Experimental results on 5,210 images demonstrate that the OWLv2 model achieves an average precision of 0.6493 for hardhat detection. We further analyze the limitations and potential improvements for real-world applications, highlighting the strengths and weaknesses of current foundation models in safety perception domains.
Abstract:This paper explores the integration of visual communication and musical interaction by implementing a robotic camera within a "Guided Harmony" musical game. We aim to examine co-creative behaviors between human musicians and robotic systems. Our research explores existing methodologies like improvisational game pieces and extends these concepts to include robotic participation using a PTZ camera. The robotic system interprets and responds to nonverbal cues from musicians, creating a collaborative and adaptive musical experience. This initial case study underscores the importance of intuitive visual communication channels. We also propose future research directions, including parameters for refining the visual cue toolkit and data collection methods to understand human-machine co-creativity further. Our findings contribute to the broader understanding of machine intelligence in augmenting human creativity, particularly in musical settings.
Abstract:Accurately detecting 3D objects from monocular images in dynamic roadside scenarios remains a challenging problem due to varying camera perspectives and unpredictable scene conditions. This paper introduces a two-stage training strategy to address these challenges. Our approach initially trains a model on the large-scale synthetic dataset, RoadSense3D, which offers a diverse range of scenarios for robust feature learning. Subsequently, we fine-tune the model on a combination of real-world datasets to enhance its adaptability to practical conditions. Experimental results of the Cube R-CNN model on challenging public benchmarks show a remarkable improvement in detection performance, with a mean average precision rising from 0.26 to 12.76 on the TUM Traffic A9 Highway dataset and from 2.09 to 6.60 on the DAIR-V2X-I dataset when performing transfer learning. Code, data, and qualitative video results are available on the project website: https://roadsense3d.github.io.
Abstract:Motorcycle accidents pose significant risks, particularly when riders and passengers do not wear helmets. This study evaluates the efficacy of an advanced vision-language foundation model, OWLv2, in detecting and classifying various helmet-wearing statuses of motorcycle occupants using video data. We extend the dataset provided by the CVPR AI City Challenge and employ a cascaded model approach for detection and classification tasks, integrating OWLv2 and CNN models. The results highlight the potential of zero-shot learning to address challenges arising from incomplete and biased training datasets, demonstrating the usage of such models in detecting motorcycles, helmet usage, and occupant positions under varied conditions. We have achieved an average precision of 0.5324 for helmet detection and provided precision-recall curves detailing the detection and classification performance. Despite limitations such as low-resolution data and poor visibility, our research shows promising advancements in automated vehicle safety and traffic safety enforcement systems.
Abstract:This study investigates the use of trajectory and dynamic state information for efficient data curation in autonomous driving machine learning tasks. We propose methods for clustering trajectory-states and sampling strategies in an active learning framework, aiming to reduce annotation and data costs while maintaining model performance. Our approach leverages trajectory information to guide data selection, promoting diversity in the training data. We demonstrate the effectiveness of our methods on the trajectory prediction task using the nuScenes dataset, showing consistent performance gains over random sampling across different data pool sizes, and even reaching sub-baseline displacement errors at just 50% of the data cost. Our results suggest that sampling typical data initially helps overcome the ''cold start problem,'' while introducing novelty becomes more beneficial as the training pool size increases. By integrating trajectory-state-informed active learning, we demonstrate that more efficient and robust autonomous driving systems are possible and practical using low-cost data curation strategies.