Abstract:Large Language Models (LLMs) are being enhanced with the ability to use tools and to process multiple modalities. These new capabilities bring new benefits and also new security risks. In this work, we show that an attacker can use visual adversarial examples to cause attacker-desired tool usage. For example, the attacker could cause a victim LLM to delete calendar events, leak private conversations and book hotels. Different from prior work, our attacks can affect the confidentiality and integrity of user resources connected to the LLM while being stealthy and generalizable to multiple input prompts. We construct these attacks using gradient-based adversarial training and characterize performance along multiple dimensions. We find that our adversarial images can manipulate the LLM to invoke tools following real-world syntax almost always (~98%) while maintaining high similarity to clean images (~0.9 SSIM). Furthermore, using human scoring and automated metrics, we find that the attacks do not noticeably affect the conversation (and its semantics) between the user and the LLM.
Abstract:Voice assistants are deployed widely and provide useful functionality. However, recent work has shown that commercial systems like Amazon Alexa and Google Home are vulnerable to voice-based confusion attacks that exploit design issues. We propose a systems-oriented defense against this class of attacks and demonstrate its functionality for Amazon Alexa. We ensure that only the skills a user intends execute in response to voice commands. Our key insight is that we can interpret a user's intentions by analyzing their activity on counterpart systems of the web and smartphones. For example, the Lyft ride-sharing Alexa skill has an Android app and a website. Our work shows how information from counterpart apps can help reduce dis-ambiguities in the skill invocation process. We build SkilIFence, a browser extension that existing voice assistant users can install to ensure that only legitimate skills run in response to their commands. Using real user data from MTurk (N = 116) and experimental trials involving synthetic and organic speech, we show that SkillFence provides a balance between usability and security by securing 90.83% of skills that a user will need with a False acceptance rate of 19.83%.
Abstract:Content scanning systems employ perceptual hashing algorithms to scan user content for illegal material, such as child pornography or terrorist recruitment flyers. Perceptual hashing algorithms help determine whether two images are visually similar while preserving the privacy of the input images. Several efforts from industry and academia propose to conduct content scanning on client devices such as smartphones due to the impending roll out of end-to-end encryption that will make server-side content scanning difficult. However, these proposals have met with strong criticism because of the potential for the technology to be misused and re-purposed. Our work informs this conversation by experimentally characterizing the potential for one type of misuse -- attackers manipulating the content scanning system to perform physical surveillance on target locations. Our contributions are threefold: (1) we offer a definition of physical surveillance in the context of client-side image scanning systems; (2) we experimentally characterize this risk and create a surveillance algorithm that achieves physical surveillance rates of >40% by poisoning 5% of the perceptual hash database; (3) we experimentally study the trade-off between the robustness of client-side image scanning systems and surveillance, showing that more robust detection of illegal material leads to increased potential for physical surveillance.
Abstract:Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small while dissimilar ones are far apart. Although the underlying neural networks produce good accuracy on naturally occurring samples, they are vulnerable to adversarially-perturbed samples that reduce performance. We take a first step towards training robust DML models and tackle the primary challenge of the metric losses being dependent on the samples in a mini-batch, unlike standard losses that only depend on the specific input-output pair. We analyze this dependence effect and contribute a robust optimization formulation. Using experiments on three commonly-used DML datasets, we demonstrate 5-76 fold increases in adversarial accuracy, and outperform an existing DML model that sought out to be robust.
Abstract:Kalman Filter (KF) is widely used in various domains to perform sequential learning or variable estimation. In the context of autonomous vehicles, KF constitutes the core component of many Advanced Driver Assistance Systems (ADAS), such as Forward Collision Warning (FCW). It tracks the states (distance, velocity etc.) of relevant traffic objects based on sensor measurements. The tracking output of KF is often fed into downstream logic to produce alerts, which will then be used by human drivers to make driving decisions in near-collision scenarios. In this paper, we study adversarial attacks on KF as part of the more complex machine-human hybrid system of Forward Collision Warning. Our attack goal is to negatively affect human braking decisions by causing KF to output incorrect state estimations that lead to false or delayed alerts. We accomplish this by sequentially manipulating measure ments fed into the KF, and propose a novel Model Predictive Control (MPC) approach to compute the optimal manipulation. Via experiments conducted in a simulated driving environment, we show that the attacker is able to successfully change FCW alert signals through planned manipulation over measurements prior to the desired target time. These results demonstrate that our attack can stealthily mislead a distracted human driver and cause vehicle collisions.
Abstract:Physical adversarial examples for camera-based computer vision have so far been achieved through visible artifacts -- a sticker on a Stop sign, colorful borders around eyeglasses or a 3D printed object with a colorful texture. An implicit assumption here is that the perturbations must be visible so that a camera can sense them. By contrast, we contribute a procedure to generate, for the first time, physical adversarial examples that are invisible to human eyes. Rather than modifying the victim object with visible artifacts, we modify light that illuminates the object. We demonstrate how an attacker can craft a modulated light signal that adversarially illuminates a scene and causes targeted misclassifications on a state-of-the-art ImageNet deep learning model. Concretely, we exploit the radiometric rolling shutter effect in commodity cameras to create precise striping patterns that appear on images. To human eyes, it appears like the object is illuminated, but the camera creates an image with stripes that will cause ML models to output the attacker-desired classification. We conduct a range of simulation and physical experiments with LEDs, demonstrating targeted attack rates up to 84%.
Abstract:We present Survival-OPT, a physical adversarial example algorithm in the black-box hard-label setting where the attacker only has access to the model prediction class label. Assuming such limited access to the model is more relevant for settings such as proprietary cyber-physical and cloud systems than the whitebox setting assumed by prior work. By leveraging the properties of physical attacks, we create a novel approach based on the survivability of perturbations corresponding to physical transformations. Through simply querying the model for hard-label predictions, we optimize perturbations to survive in many different physical conditions and show that adversarial examples remain a security risk to cyber-physical systems (CPSs) even in the hard-label threat model. We show that Survival-OPT is query-efficient and robust: using fewer than 200K queries, we successfully attack a stop sign to be misclassified as a speed limit 30 km/hr sign in 98.5% of video frames in a drive-by setting. Survival-OPT also outperforms our baseline combination of existing hard-label and physical approaches, which required over 10x more queries for less robust results.
Abstract:Recently, interpretable models called self-explaining models (SEMs) have been proposed with the goal of providing interpretability robustness. We evaluate the interpretability robustness of SEMs and show that explanations provided by SEMs as currently proposed are not robust to adversarial inputs. Specifically, we successfully created adversarial inputs that do not change the model outputs but cause significant changes in the explanations. We find that even though current SEMs use stable co-efficients for mapping explanations to output labels, they do not consider the robustness of the first stage of the model that creates interpretable basis concepts from the input, leading to non-robust explanations. Our work makes a case for future work to start examining how to generate interpretable basis concepts in a robust way.
Abstract:Deep neural networks (DNNs) are vulnerable to adversarial examples-maliciously crafted inputs that cause DNNs to make incorrect predictions. Recent work has shown that these attacks generalize to the physical domain, to create perturbations on physical objects that fool image classifiers under a variety of real-world conditions. Such attacks pose a risk to deep learning models used in safety-critical cyber-physical systems. In this work, we extend physical attacks to more challenging object detection models, a broader class of deep learning algorithms widely used to detect and label multiple objects within a scene. Improving upon a previous physical attack on image classifiers, we create perturbed physical objects that are either ignored or mislabeled by object detection models. We implement a Disappearance Attack, in which we cause a Stop sign to "disappear" according to the detector-either by covering thesign with an adversarial Stop sign poster, or by adding adversarial stickers onto the sign. In a video recorded in a controlled lab environment, the state-of-the-art YOLOv2 detector failed to recognize these adversarial Stop signs in over 85% of the video frames. In an outdoor experiment, YOLO was fooled by the poster and sticker attacks in 72.5% and 63.5% of the video frames respectively. We also use Faster R-CNN, a different object detection model, to demonstrate the transferability of our adversarial perturbations. The created poster perturbation is able to fool Faster R-CNN in 85.9% of the video frames in a controlled lab environment, and 40.2% of the video frames in an outdoor environment. Finally, we present preliminary results with a new Creation Attack, where in innocuous physical stickers fool a model into detecting nonexistent objects.
Abstract:Deep learning has proven to be a powerful tool for computer vision and has seen widespread adoption for numerous tasks. However, deep learning algorithms are known to be vulnerable to adversarial examples. These adversarial inputs are created such that, when provided to a deep learning algorithm, they are very likely to be mislabeled. This can be problematic when deep learning is used to assist in safety critical decisions. Recent research has shown that classifiers can be attacked by physical adversarial examples under various physical conditions. Given the fact that state-of-the-art objection detection algorithms are harder to be fooled by the same set of adversarial examples, here we show that these detectors can also be attacked by physical adversarial examples. In this note, we briefly show both static and dynamic test results. We design an algorithm that produces physical adversarial inputs, which can fool the YOLO object detector and can also attack Faster-RCNN with relatively high success rate based on transferability. Furthermore, our algorithm can compress the size of the adversarial inputs to stickers that, when attached to the targeted object, result in the detector either mislabeling or not detecting the object a high percentage of the time. This note provides a small set of results. Our upcoming paper will contain a thorough evaluation on other object detectors, and will present the algorithm.