Abstract:Deceptive patterns (DPs) in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous across various digital platforms. While efforts to mitigate DPs have emerged from legal and technical perspectives, a significant gap in usable solutions that empower users to identify and make informed decisions about DPs in real-time remains. In this work, we introduce AutoBot, an automated, deceptive pattern detector that analyzes websites' visual appearances using machine learning techniques to identify and notify users of DPs in real-time. AutoBot employs a two-staged pipeline that processes website screenshots, identifying interactable elements and extracting textual features without relying on HTML structure. By leveraging a custom language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We implement AutoBot as a lightweight Chrome browser extension that performs all analyses locally, minimizing latency and preserving user privacy. Through extensive evaluation, we demonstrate AutoBot's effectiveness in enhancing users' ability to navigate digital environments safely while providing a valuable tool for regulators to assess and enforce compliance with DP regulations.
Abstract:Pedestrian heading tracking enables applications in pedestrian navigation, traffic safety, and accessibility. Previous works, using inertial sensor fusion or machine learning, are limited in that they assume the phone is fixed in specific orientations, hindering their generalizability. We propose a new heading tracking algorithm, the Orientation-Heading Alignment (OHA), which leverages a key insight: people tend to carry smartphones in certain ways due to habits, such as swinging them while walking. For each smartphone attitude during this motion, OHA maps the smartphone orientation to the pedestrian heading and learns such mappings efficiently from coarse headings and smartphone orientations. To anchor our algorithm in a practical scenario, we apply OHA to a challenging task: predicting when pedestrians are about to cross the road to improve road user safety. In particular, using 755 hours of walking data collected since 2020 from 60 individuals, we develop a lightweight model that operates in real-time on commodity devices to predict road crossings. Our evaluation shows that OHA achieves 3.4 times smaller heading errors across nine scenarios than existing methods. Furthermore, OHA enables the early and accurate detection of pedestrian crossing behavior, issuing crossing alerts 0.35 seconds, on average, before pedestrians enter the road range.
Abstract:Privacy policies are crucial in the online ecosystem, defining how services handle user data and adhere to regulations such as GDPR and CCPA. However, their complexity and frequent updates often make them difficult for stakeholders to understand and analyze. Current automated analysis methods, which utilize natural language processing, have limitations. They typically focus on individual tasks and fail to capture the full context of the policies. We propose PolicyLR, a new paradigm that offers a comprehensive machine-readable representation of privacy policies, serving as an all-in-one solution for multiple downstream tasks. PolicyLR converts privacy policies into a machine-readable format using valuations of atomic formulae, allowing for formal definitions of tasks like compliance and consistency. We have developed a compiler that transforms unstructured policy text into this format using off-the-shelf Large Language Models (LLMs). This compiler breaks down the transformation task into a two-stage translation and entailment procedure. This procedure considers the full context of the privacy policy to infer a complex formula, where each formula consists of simpler atomic formulae. The advantage of this model is that PolicyLR is interpretable by design and grounded in segments of the privacy policy. We evaluated the compiler using ToS;DR, a community-annotated privacy policy entailment dataset. Utilizing open-source LLMs, our compiler achieves precision and recall values of 0.91 and 0.88, respectively. Finally, we demonstrate the utility of PolicyLR in three privacy tasks: Policy Compliance, Inconsistency Detection, and Privacy Comparison Shopping.
Abstract:Computer vision systems have been deployed in various applications involving biometrics like human faces. These systems can identify social media users, search for missing persons, and verify identity of individuals. While computer vision models are often evaluated for accuracy on available benchmarks, more annotated data is necessary to learn about their robustness and fairness against semantic distributional shifts in input data, especially in face data. Among annotated data, counterfactual examples grant strong explainability characteristics. Because collecting natural face data is prohibitively expensive, we put forth a generative AI-based framework to construct targeted, counterfactual, high-quality synthetic face data. Our synthetic data pipeline has many use cases, including face recognition systems sensitivity evaluations and image understanding system probes. The pipeline is validated with multiple user studies. We showcase the efficacy of our face generation pipeline on a leading commercial vision model. We identify facial attributes that cause vision systems to fail.
Abstract:Mobile apps have embraced user privacy by moving their data processing to the user's smartphone. Advanced machine learning (ML) models, such as vision models, can now locally analyze user images to extract insights that drive several functionalities. Capitalizing on this new processing model of locally analyzing user images, we analyze two popular social media apps, TikTok and Instagram, to reveal (1) what insights vision models in both apps infer about users from their image and video data and (2) whether these models exhibit performance disparities with respect to demographics. As vision models provide signals for sensitive technologies like age verification and facial recognition, understanding potential biases in these models is crucial for ensuring that users receive equitable and accurate services. We develop a novel method for capturing and evaluating ML tasks in mobile apps, overcoming challenges like code obfuscation, native code execution, and scalability. Our method comprises ML task detection, ML pipeline reconstruction, and ML performance assessment, specifically focusing on demographic disparities. We apply our methodology to TikTok and Instagram, revealing significant insights. For TikTok, we find issues in age and gender prediction accuracy, particularly for minors and Black individuals. In Instagram, our analysis uncovers demographic disparities in the extraction of over 500 visual concepts from images, with evidence of spurious correlations between demographic features and certain concepts.
Abstract:Large language models (LLMs) are typically aligned to be harmless to humans. Unfortunately, recent work has shown that such models are susceptible to automated jailbreak attacks that induce them to generate harmful content. More recent LLMs often incorporate an additional layer of defense, a Guard Model, which is a second LLM that is designed to check and moderate the output response of the primary LLM. Our key contribution is to show a novel attack strategy, PRP, that is successful against several open-source (e.g., Llama 2) and closed-source (e.g., GPT 3.5) implementations of Guard Models. PRP leverages a two step prefix-based attack that operates by (a) constructing a universal adversarial prefix for the Guard Model, and (b) propagating this prefix to the response. We find that this procedure is effective across multiple threat models, including ones in which the adversary has no access to the Guard Model at all. Our work suggests that further advances are required on defenses and Guard Models before they can be considered effective.
Abstract:Large Language Models' success on text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
Abstract:Visual adversarial examples have so far been restricted to pixel-level image manipulations in the digital world, or have required sophisticated equipment such as 2D or 3D printers to be produced in the physical real world. We present the first ever method of generating human-producible adversarial examples for the real world that requires nothing more complicated than a marker pen. We call them $\textbf{adversarial tags}$. First, building on top of differential rendering, we demonstrate that it is possible to build potent adversarial examples with just lines. We find that by drawing just $4$ lines we can disrupt a YOLO-based model in $54.8\%$ of cases; increasing this to $9$ lines disrupts $81.8\%$ of the cases tested. Next, we devise an improved method for line placement to be invariant to human drawing error. We evaluate our system thoroughly in both digital and analogue worlds and demonstrate that our tags can be applied by untrained humans. We demonstrate the effectiveness of our method for producing real-world adversarial examples by conducting a user study where participants were asked to draw over printed images using digital equivalents as guides. We further evaluate the effectiveness of both targeted and untargeted attacks, and discuss various trade-offs and method limitations, as well as the practical and ethical implications of our work. The source code will be released publicly.
Abstract:Text-to-image diffusion models have achieved widespread popularity due to their unprecedented image generation capability. In particular, their ability to synthesize and modify human faces has spurred research into using generated face images in both training data augmentation and model performance assessments. In this paper, we study the efficacy and shortcomings of generative models in the context of face generation. Utilizing a combination of qualitative and quantitative measures, including embedding-based metrics and user studies, we present a framework to audit the characteristics of generated faces conditioned on a set of social attributes. We applied our framework on faces generated through state-of-the-art text-to-image diffusion models. We identify several limitations of face image generation that include faithfulness to the text prompt, demographic disparities, and distributional shifts. Furthermore, we present an analytical model that provides insights into how training data selection contributes to the performance of generative models.
Abstract:Machine Learning (ML) systems are vulnerable to adversarial examples, particularly those from query-based black-box attacks. Despite various efforts to detect and prevent such attacks, there is a need for a more comprehensive approach to logging, analyzing, and sharing evidence of attacks. While classic security benefits from well-established forensics and intelligence sharing, Machine Learning is yet to find a way to profile its attackers and share information about them. In response, this paper introduces SEA, a novel ML security system to characterize black-box attacks on ML systems for forensic purposes and to facilitate human-explainable intelligence sharing. SEA leverages the Hidden Markov Models framework to attribute the observed query sequence to known attacks. It thus understands the attack's progression rather than just focusing on the final adversarial examples. Our evaluations reveal that SEA is effective at attack attribution, even on their second occurrence, and is robust to adaptive strategies designed to evade forensics analysis. Interestingly, SEA's explanations of the attack behavior allow us even to fingerprint specific minor implementation bugs in attack libraries. For example, we discover that the SignOPT and Square attacks implementation in ART v1.14 sends over 50% specific zero difference queries. We thoroughly evaluate SEA on a variety of settings and demonstrate that it can recognize the same attack's second occurrence with 90+% Top-1 and 95+% Top-3 accuracy.